ARDITE CARDITE ARCHITETTA

Dal **1964**PROGETTI • PROPOSTE • PRODOTTI®

Benvenuti nel mondo dei Sistemi

Benvenati


	TERMOPARETI®	pag.	09
	FISSAGGIO NASCOSTO		10
/	FISSAGGIO NASCOSTO ALTERNATIVA		12
	FISSAGGIO A VISTA		13
	FLAT		14
	BUBBLE		18
	RUGBY		22
	CAOS		26
	serie AEFFE ATHOS		30
	serie AEFFE ATHOS TERMOFONISOL		31
	TERMOCOPERTURE ®	pag.	33
	tipo TCP/C RP/ST 4G		34
/	serie ZOOTEC		36
	serie ZOOTEC EAT		37
	FLEX		38
	serie SLIM		39
	POLIOLEFINE		40
	serie AEFFE OLYMPOS		42
	serie AEFFE OLYMPOS TERMOFONISOL		43
	FACCIATE ARCHITETTONICHE	pag.	45
	sistema SERBOND®		46
	sistemi e componenti speciali a taglio termic	0	56
	LAMIERE GRECATE	pag.	61
	LG 454 COPERTURA - LG 450 PARETE	1 - 3	62
	LAMIERE STAMPATE - LAMIERE CENTINATE		63
/	Solai SOLAC®	pag.	64
	SOLAC 55 - LG 550		64
	SOLAC 75 - LG 750		65
	Accessori complementari - Finiture		66
	Tabella colori		72
	Rapporti di classificazione		73

Una fantastica Storia Imprenditoriale iniziata nel 1920...

Anno 1920: Mariano Granieri crea una piccola bottega di falegname dove costruisce carri agricoli

Luigi Granieri (figlio di Mariano) nei primi anni '50 fonda ILFE Serramenti

Elcom System Spa, sorta nel lontano 1964, fondata dal commendatore Luigi Granieri, si è rapidamente affermata sul mercato italiano ed estero come impresa leader nel settore della prefabbricazione edilizia con una filosofia aziendale orientata alla ricerca tecnologica e all'innovazione. Nel costante programma di affinamento e di miglioramento delle proprie tecnologie e di nuovi prodotti, l'Azienda ha precorso i tempi anticipando soluzioni imposte da un mercato in via di continua e rapida evoluzione. Ha saputo conquistare la fiducia dei suoi clienti, ai quali presenta una vasta gamma di prodotti, atti a soddisfare ogni esigenza, raggiungendo i primi posti nell'offrire garanzie a progettisti, tecnici ed utilizzatori.

Elcom System Spa è situata nel "cuore" verde dell'Umbria, a Todi, su un'area di 85.000 metri quadri di superficie, di cui 27.000 coperti, e dispone di impianti all'avanguardia volti alla produzione di elementi coordinati modulari per l'edilizia prefabbricata quali pannelli termoisolanti denominati Termopareti[®] e Termocoperture[®] (nomi brevettati), facciate architettoniche, lamiere grecate per coperture e pareti, solai, sistemi e componenti speciali a taglio termico, raccordi sferici, profili, accessori di fissaggio e finitura.

La nostra Identità... I nostri Obiettivi

Elcom System Spa, ai vertici dell'edilizia industrializzata, produce oggi i pannelli del domani e riesce in questo modo ad anticipare i bisogni e le esigenze sempre maggiori della società, in linea con il progresso tecnologico e in armonia con il divenire dell'uomo ma nel pieno rispetto della propria tradizione.

Elcom System Spa, forte della sua lunga esperienza, si affida alla ricerca sperimentale ed applicata per offrire risposte progettuali adeguate e al passo con i tempi, salvaguardando l'ambiente e la natura nella quale essa si colloca. Alla sua produzione l'azienda conferisce le connotazioni fondamentali della stabilità, della sicurezza, e del maggior comfort possibile, senza trascurare, tuttavia, gli standard estetici.

Elcom System Spa, che fa suoi i progressi della scienza e della tecnologia, si pone all'avanguardia nelle conquiste del terzo millennio, fedele ad una propria collaudata "filosofia" che privilegia la compiutezza del prodotto finito e da' risposte concrete alle necessità del nuovo mondo. Il tutto attraverso schemi produttivi e realizzativi in grado di superare le aspettative di una clientela nazionale e internazionale assolutamente eterogenea.

Luigi Granieri a 33 anni rende la ILFE Serramenti Spa una grande realtà industriale nazionale

Nel 1968 il Cavaliere Luigi Granieri riceve il Premio Europeo "Mercurio d'Oro"

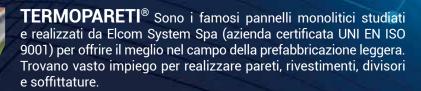
1974: Dal genio imprenditoriale di Luigi Granieri nascono i famosi pannelli TERMOPARETI® e TERMOCOPERTURE® II Commendat 1984: Luigi Granieri inventore di edifici che sfidano il terremoto su una piattaforma vibrante da lui progettata (1927 - 2008)

Il nuovo stabilimento ILFE Serramenti nel 1964

Il premio europeo "Mercurio d'Oro" assegnato a Luigi Granieri

(1927 - 2008)

Alla conquista di nuovi traguardi



ELCOM SYSTEM è il valore aggiunto alle tue realizzazioni, con risposte innovative e contemporanee

Elcom System Spa crede fermamente nello sviluppo e nel potenziamento della sinergia fra ricerca e produzione per realizzare prodotti innovativi che costituiscono la ragione del Suo successo.

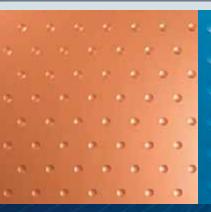
ELCOM SYSTEM è...

TERMOCOPERTURE[®] Sono i pannelli sandwich monolitici studiati e realizzati da Elcom System Spa (azienda certificata UNI EN ISO 9001) per offrire il meglio nel campo della prefabbricazione leggera. Trovano vasto impiego per realizzare coperture e soffittature.

SERBOND[®] Il concetto di Serbond si è sviluppato intorno ad una idea nata per offrire ai progettisti una elevata libertà creativa, svincolati da moduli produttivi rigidi e griglie geometriche preimpostate. Il sistema è particolarmente versatile e compatibile con qualsiasi tipo di struttura.

LAMIERE GRECATE Le lamiere grecate sono state studiate per realizzare coperture, pareti e solai. La possibilità di lavorazioni particolari, quali la centinatura e l'imbutitura, permettono l'utilizzo su ogni tipo di costruzione.

LE GEOMETRIE



TERMOPARETI® BUBBLE

Progettati per essere utilizzati nell'edilizia industriale, commerciale, residenziale e dei servizi ove si voglia ottenere effetti architettonici estremamente originali.

TERMOPARETI® RUGBY

Progettati per ottenere originali facciate architettoniche con un elevato e insolito design innovativo, fino ad oggi trascurato nel settore dei pannelli termoisolanti.

TERMOPARETI® FLAT

Pannelli monolitici studiati e realizzati per offrire il meglio nel campo della prefabbricazione leggera. Trovano vasto impiego per realizzare pareti, rivestimenti, divisori e soffittature

Un progetto ambizioso che rivoluziona il concetto stesso di "pannello" rivelandosi un prodotto del tutto nuovo per concezione e percezione, sia estetica che architettonica.

Ardite Realizzazioni che fanno Architettura

LE GEOMETRIE

TERMOPARETI® TERMOCOPERTURE®

CF

Via s.s. Ex Tiberina 3 bis, 218 06059 - PANTALLA di TODI - PG

> 20 EN 14509

Pannelli metallici isolanti per edifici

Riferimento: TERMOPARETI® e TERMOCOPERTURE®

Isolamento: PUR / PIR

Supporti: ACCIAIO / ALLUMINIO / RAME / INOX / CORTEN

IMPIEGO: COPERTURE e PARETI

Trasmittanza termica

Resistenza meccanica

- Resistenza a trazione
- Resistenza a taglio
- Resistenza al taglio ridotta a lungo termine
- Modulo di taglio (anima)
- Resistenza a compressione (anima)

Coefficiente di scorrimento

Resistenza a flessione: campata

- Flessione positiva
- Flessione positiva, alte temperature
- Flessione negativa
- Flessione negativa, alte temperature

Resistenza a flessione: appoggio interno

- Flessione positiva
- Flessione positiva, alte temperature
- Flessione negativa
- Flessione negativa, alte temperature

Tensione di raggrinzamento (faccia esterna)

- in campata
- in campata, alte temperature
- ad un appoggio centrale
- ad un appoggio centrale, alte temperature

Tensione di raggrinzamento (faccia interna)

- in campata
- ad un appoggio centrale

Reazione al fuoco

Resistenza al fuoco

Comportamento al fuoco dall'esterno

Permeabilità all'acqua

Permeabilità all'aria

Permeabilità al vapore acqueo

Isolamento acustico in aria

Assorbimento acustico

Durabilità

I pannelli metallici isolanti denominati TERMOPARETI®-TERMOCOPERTURE® (® nomi brevettati), sono i famosi pannelli monolitici studiati e realizzati dalla ELCOM SYSTEM S.p.A. (Azienda certificata UNI EN ISO 9001) per offrire il meglio nel campo della prefabbricazione leggera

I pannelli **TERMOPARETI®-TERMOCOPERTURE®** permettono di realizzare: coperture, pareti, rivestimenti, divisori, soffittature, box, pensiline, ecc., oltre ad un'infinita gamma di piccole, medie e grandi costruzioni prefabbricate nel settore industriale, civile, commerciale, sociale, agricolo e zootecnico.

L'AZIENDA PRODUCE INOLTRE, I PANNELLI BUBBLE AD IMPRONTE SFERICHE E RUGBY AD IMPRONTE ELLITTICHE ED I NUOVI PANNELLI CAOS, STUDIATI PER FACCIATE CON UN ORIGINALE ED ESCLUSIVO EFFETTO ARCHITETTONICO.

Per la personalizzazione dei progetti vengono prodotti particolari elementi di giunzione e componenti speciali a taglio termico quali: raccordi sferici, retti, curvi, da utilizzare in armonia con i propri prodotti per raggiungere un elevato e straordinario risultato architettonico.

CARATTERISTICHE TECNICHE

Supporti metallici esterni: sono ricavati per profilatura a freddo da nastri in coils di diverso materiale: **acciaio** al carbonio rivestito da uno strato di zinco a caldo, denominazione S 250GD conforme alla norma UNI EN 10346 aventi caratteristiche meccaniche non inferiori a quelle

previste dal D.M. del 14/01/2008 e tolleranze secondo la norma UNI EN 10143; **alluminio** conforme alla norma UNI EN 1396, con carico di rottura minimo 150 MPa; **rame** conforme alla norma UNI EN 1172; **acciaio inossidabile** conforme alla norma EN 10088-1; **COR-TEN**.

La finitura dei supporti in acciaio e alluminio è costituita da un rivestimento organico mediante ciclo di preverniciatura a caldo standard in poliestere secondo norme UNI EN 10169, oppure a richiesta, possono essere forniti rivestimenti diversi come plastificato alimentare, EAT o PVDE, ecc.

È possibile realizzare pannelli **TERMOCOPERTURE**® con supporto interno in cartonfeltro bitumato cilindrato o in alluminio centesimale. Specifiche Termocoperture® per la zootecnia, denominate serie **ZOOTEC**, sono realizzate con un supporto interno in vetroresina (bianco opalino) per ambienti con presenza di esalazioni biologiche, resistente a batteri, urea e ammoniaca.

I colori delle Termocoperture® e Termopareti®, la cui tabella è allegata, sono ottenuti con pigmenti di stabilità comprovata da prove di lunga esposizione.

Isolamento: in poliuretano espanso esente da CFC, (PUR) ottenuto secondo norma UNI EN 13165. A richiesta possono essere fornite schiume aventi caratteristiche di reazione al fuoco classe E. Per esigenze particolari, si possono produrre schiume con polisocianurati (PIR) i quali per la loro natura hanno comportamento al fuoco superiore, pannello classe B S2 d0 UNI EN 13501-1.

Le caratteristiche principali delle schiume sono:

- Densità: ~ 40 kg/m3.
- resistenza alla compressione: 140 -150 KPa
- impermeabilità: 98% di cellule chiuse (materiale anigroscopico)

Tolleranze (in accordo all'allegato D UNI EN 14509):

- Spessore (rispetto al valore dichiarato)

 $D \le 100 \text{ mm} \pm 2 \text{ mm}$

D > 100 mm ± 2%

- Lunghezza ± 5 mm.

- Planarità: L = 200

L = 200 mm l ≤ 0,6 mm L = 400 mm l ≤ 1 mm

(L = distanza tra gli estremi di misurazione)

- Fuori squadra del taglio: s ≤ 0,6% della larghezza utile

- Passo tra le greche: ± 2 mm

Carichi ammissibili: i valori riportati nelle tabelle, sono valori indicativi calcolati secondo le raccomandazioni ECCS ed AIPPEG comprovati da prove sperimentali. Per il dimensionamento e la verifica riferirsi all'allegato E della norma UNI EN 14509.

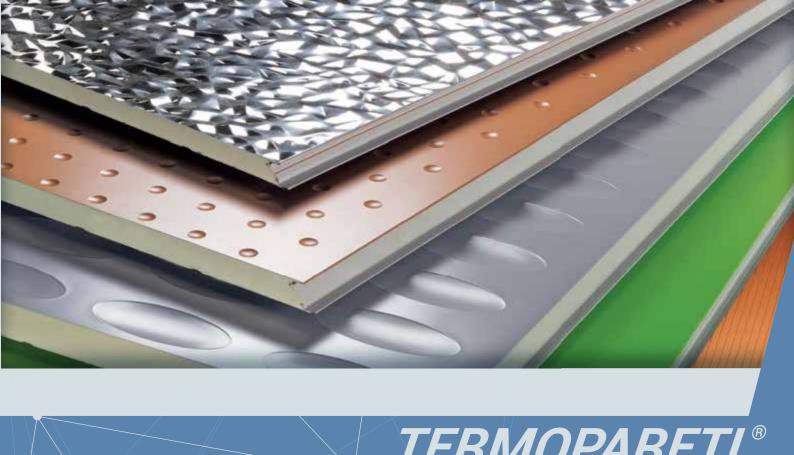
Caratteristiche peculiari: tutti i pannelli TERMOPARETI® sono dotati di un profilo continuo in PVC ad incastro speciale, sul lato femmina, per dare maggiore stabilità al fissaggio ed evitare distacchi delle lamiere dall'isolamento, sia durante la manipolazione che in fase di montaggio (esclusi spessori mm 120-150-180).

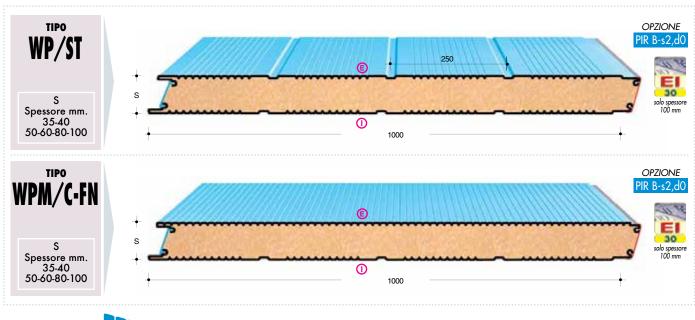
Le TERMOPARETI® e TERMOCOPERTURE® ELCOM SYSTEM prodotte con schiuma poliisocianuratica (PIR) hanno ottenuto la certificazione per la reazione al fuoco B-s2 d0 in accordo alla norma europea EN 13501-1 e la certificazione per la resistenza al fuoco EI 20, EI 30 e REI 20 in accordo alla norma EN 13501-2.

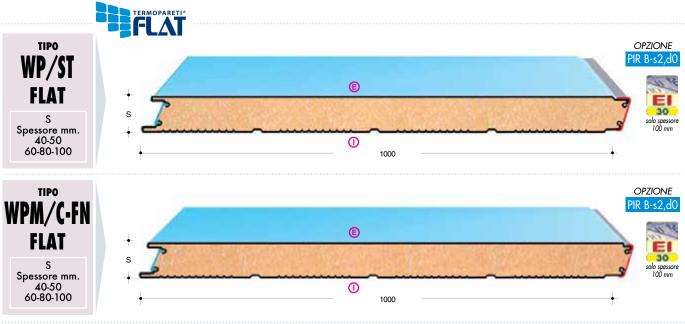
Il PIR (poliisocianurato), isolante dalle stesse prestazioni di isolamento termico del poliuretano classico, ha prestazioni superiori di reazione e resistenza al fuoco ed è ottenuto dalla reazione tra poliolo e un eccesso di isocianato. L'eccesso di isocianato reagisce con se stesso formando un materiale termostabile; questa reazione si chiama trimerizzazione.

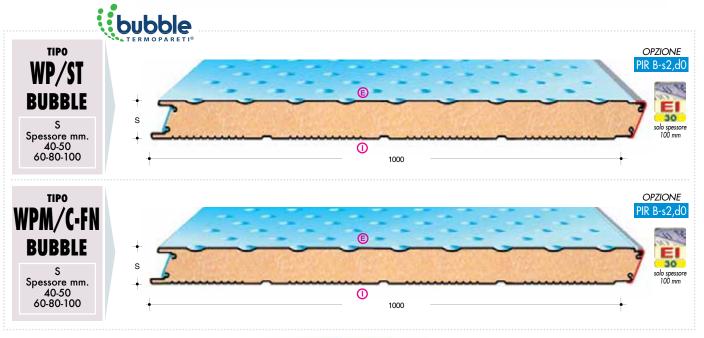
Questi legami ciclici tipici del PIR, conferiscono alla schiuma prestazioni di reazione e resistenza al fuoco migliori rispetto alle tradizionali schiume PUR garantendo una minor formazione di fumo durante la combustione, come dimostra il risultato raggiunto con la certificazione **B-s2 d0**.

A seguito dell'entrata in vigore della marcatura e della nuova classificazione europea secondo le Euroclassi definite nella EN 13501-1, è stata necessaria una evoluzione nelle prestazioni di reazione al fuoco.

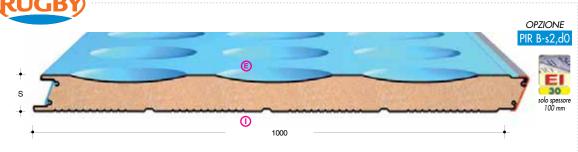


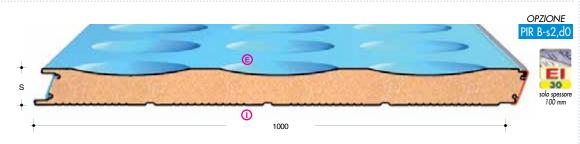




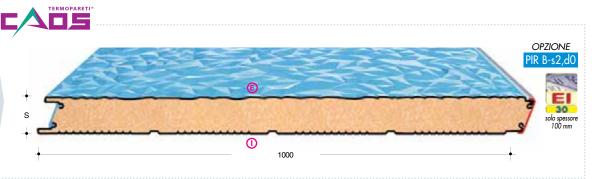

TERMOPARETI®

Ardite Realizzazioni che fanno Architettura




TIPO WP/ST **RUGBY**

S Spessore mm. 40-50 60-80-100


TIPO WPM/C-FN **RUGBY**

Spessore mm. 40-50 60-80-100

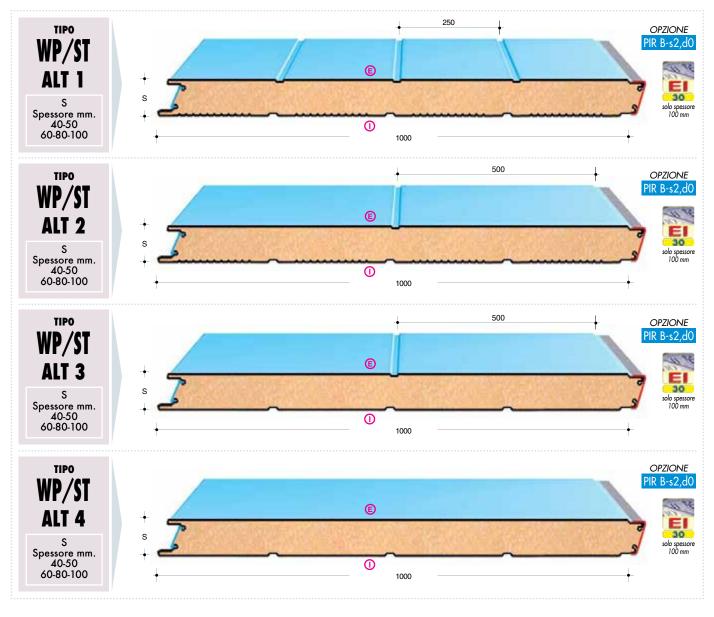
TIPO WPM/C-FN CAOS

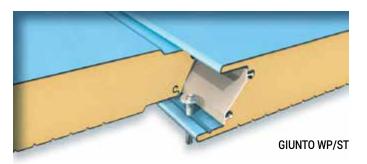
Spessore mm. 40-50 60-80-100

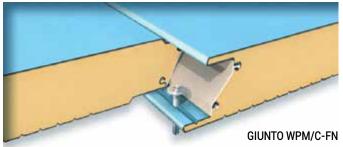
	ISOLAMENT	O TERMICO	O			CONE	DIZIONI DI C	ARICO - Car	ichi utili di ese	ercizio uniform	emente distril	ouiti in KG/m²	- KN/m²	
S	Kcal L	Jw	peso	U.M.				DIS	TANZA TRA GL	I APPOGGI IN	ml	A		
spessore mm	m²- h -°C	m² -°C	Kg/m²		2,00	2,50	3,00	3,50	4,00	2,00	2,50	3,00	3,50	4,00
25	0,711	0,827	9,58	Kg/m² KN/m²	125 1,23	85 0,83	60 0,59	50 0,49	40 0,39	130 1,27	95 0,93	70 0,68	60 0,59	50 0,49
30	0,602	0,697	9,77	Kg/m ² KN/m ²	140 1,37	95 0,94	70 0,69	55 0,54	45 0,44	145 1,42	105 1,03	80 0,78	65 0,64	55 0,54
35	0,522	0,607	9,96	Kg/m² KN/m²	145 1,42	100 0,98	80 0,78	60 0,59	50 0,49	155 1,52	115 1,12	90 0,88	70 0,68	60 0,58
40	0,461	0,536	10,15	Kg/m² KN/m²	166 1,63	125 1,22	90 0,88	70 0,68	55 0,54	178 1,74	140 1,37	108 1,05	85 0,83	70 0,68
50	0,372	0,433	10,53	Kg/m² KN/m²	225 2,21	160 1,57	120 1,18	90 0,88	70 0,68	245 2,41	182 1,78	140 1,37	115 1,13	90 0,88
60	0,313	0,364	10,91	Kg/m² KN/m²	289 2,83	216 2,12	142 1,39	115 1,13	85 0,83	321 3,15	237 2,32	181 1,77	141 1,38	115 1,13
80	0,237	0,276	11,67	Kg/m² KN/m²	455 4,46	316 3,09	227 2,22	160 1,57	120 1,18	500 4,91	365 3,58	280 2,74	215 2,11	145 1,42
100	0,191	0,222	12,63	Kg/m² KN/m²	470 4,60	345 3,38	260 2,55	200 1,96	160 1,57	510 4,99	390 3,82	285 2,79	225 2,20	180 1,76
120	0,160	0,186	13,43	Kg/m² KN/m²	510 4,99	435 4,26	290 2,84	260 2,55	200 1,96	535 5,24	445 4,36	320 3,13	290 2,84	210 2,06

CONDIZIONI DI CARICO CON SUPPORTI IN ACCIAIO:
I valori dei carichi riportati nelle tabelle sono indicativi; si riferiscono ad una freccia 1≤1/200 della luce ℓ(m) per pannelli con spessore dei supporti in ACCIAIO 0,5+0,5 mm. Per il dimensionamento e la verifica riferirsi all'allegato E della norma UNI EN 14509 e ai valori dichiarati nella marcatura C €. La lettera ① ⑤ indica il lato eventualmente preverniciato.

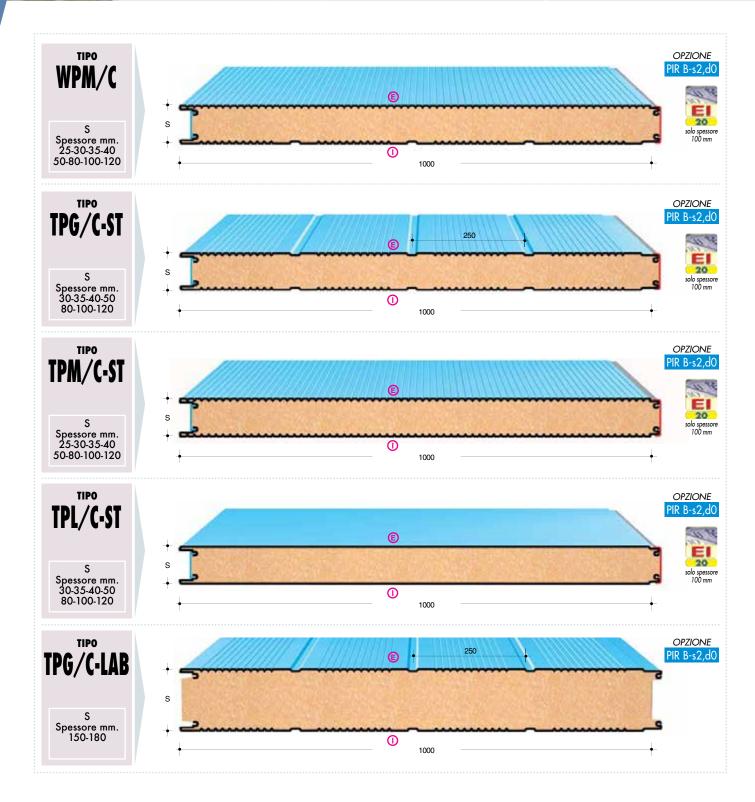
1	SOLAMENT	O TERMICO)			COND	IZIONI DI CA	ARICO - Car	ichi utili di ese	rcizio uniform	emente distrib	ouiti in KG/m² -	KN/m²	
S	Kcal U	w	peso	U.M.				DIS	TANZA TRA GL	I APPOGGI IN		<u> </u>		
spessore mm	m²- h -°C	m² -°C	Kg/m²		2,00	2,50	3,00	3,50	4,00	2,00	2,50	3,00	3,50	4,00
40	0,461	0,536	5,16	Kg/m ² KN/m ²	108 1,06	64 0,62	41 0,40	27 0,26	19 0,18	149 1,46	95 0,93	64 0,63	44 0,43	32 0,31
50	0,372	0,433	5,56	Kg/m ² KN/m ²	150 1,47	92 0,90	60 0,58	41 0,40	29 0,28	194 1,90	129 1,26	89 0,87	63 0,61	46 0,45
60	0,313	0,364	5,96	Kg/m ² KN/m ²	191 1,87	121 1,18	81 0,79	56 0,55	40 0,39	237 2,32	162 1,59	114 1,11	83 0,81	62 0,61
80	0,237	0,276	6,76	Kg/m² KN/m²	272 2,67	180 1,76	125 1,22	89 0,87	65 0,63	317 3,11	225 2,20	165 1,62	124 1,21	95 0,93
100	0,191	0,222	7,56	Kg/m ² KN/m ²	290 2,84	235 2,30	180 1,76	110 1,08	90 0,88	310 2,94	255 2,49	190 1,86	135 1,32	100 0,98
120	0,160	0,186	8,36	Kg/m ² KN/m ²	315 3,09	270 2,64	210 2,06	185 1,81	110 1,08	340 3,33	295 2,89	240 2,35	195 1,91	135 1,32

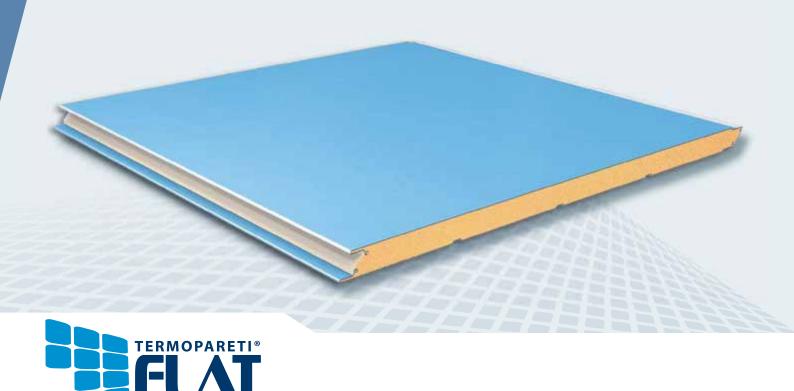

CONDIZIONI DI CARICO CON SUPPORTI IN ALLUMINIO:
I valori dei carichi riportati nelle tabelle sono indicativi; si riferiscono ad una freccia 1≤1/200 della luce ℓ (m) per pannelli con spessore dei supporti in **ALLUMINIO** 0,6+0,6 mm. Per il dimensionamento e la verifica riferirsi all'allegato E della norma UNI EN 14509 e ai valori dichiarati nella marcatura C €. La lettera ① ⑤ indica il lato eventualmente preverniciato.




WP/ST ALTERNATIVA 1-2-3-4

La serie **WP/ST ALTERNATIVA 1-2-3-4** permette di creare visivamente moduli da mm 250 e mm 500, sia in senso orizzontale che verticale, ottenendo così originali figure geometriche ed un insolito effetto architettonico.





Caratteristiche tecnico-prestazionali:

Supporti: ACCIAIO - S 250 GD conforme alla norma UNI EN 10346 aventi caratteristiche meccaniche non inferiori a quelle previste dal D.M. del 14/01/2008 e tolleranze secondo la norma UNI EN 10143 ALLUMINIO - UNI EN 1396, con carico di rottura minimo 150 MPa

RAME - UNI EN 1172

COR-TEN

ACCIAIO INOSSIDABILE - Secondo norma UNI EN 10088-1

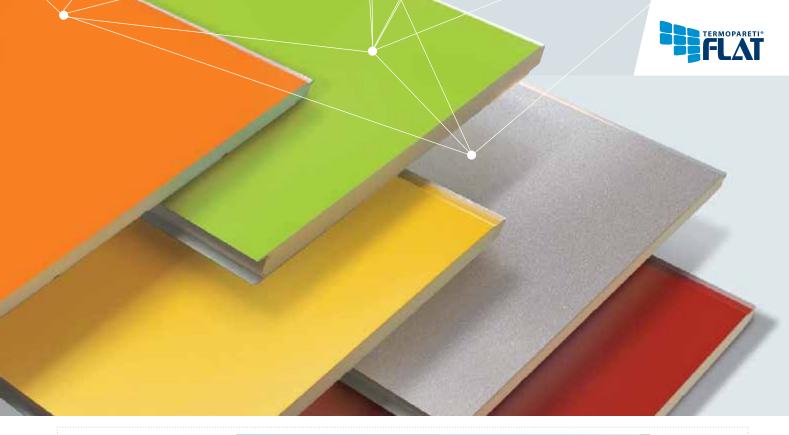
Isolante: PUR Densità ~ 40 Kg/m3 **Spessori**: mm. 40-50-60-80-100 Modulo base: Larghezza mm. 1000 I pannelli TERMOPARETI® FLAT vengono prodotti in varie tipologie e sono stati progettati per essere utilizzati nell'edilizia industriale, commerciale, residenziale e dei servizi; si applica su qualsiasi progetto sia per nuove costruzioni che per ristrutturazioni. Possono essere utilizzati per pareti continue e/o discontinue esterne, divisori interni e controsoffitti. La vasta gamma di tipologie, materiali e colori, offre ad architetti, progettisti, utilizzatori finali un'ampia libertà di scelta. Possono essere applicati su strutture di ogni genere: metalliche, calcestruzzo e legno. Gli stessi vengono installati in posizione verticale, orizzontale oppure inclinati e sono collegati ad incastro tra loro, fissati con specifici accessori. Elementi di finitura a taglio termico, quali angoli curvi, angoli retti, spigoli ed ottavi di sfera completano e valorizzano ancora di più le TERMOPARETI® FLAT.

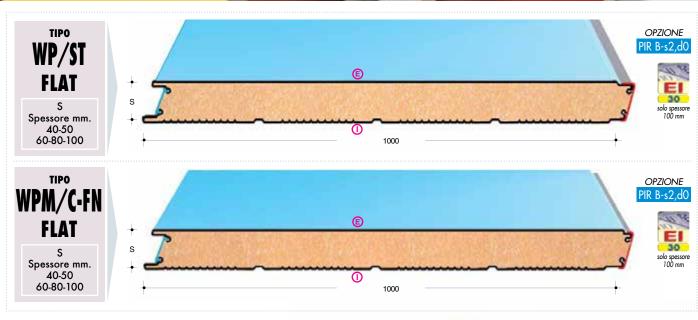
	ISOLAMENT	O TERMICO					CONDIZIONI D	I CARICO - C	Carichi utili di ese	ercizio uniformer	mente distribuit	i in KG/m² - KN/m²		
S	Kcal L	J _W	peso	U.M.				DIS	STANZA TRA GI	LI APPOGGI IN	Imℓ			
spessore mm	m²- h -°C	m² -°C	Kg/m²		2,00	2,50	3,00	3,50	4,00	2,00	2,50	3,00	3,50	4,00
40	0.461	0,536	10,15	Kg/m²	166	125	90	70	55	178	140	108	85 0,83	70 0.68
	-, -	-,	,	KN/m ²	1,63	1,22	0,88	0,68	0,54	1,74	1,37	1,05	,	-,
50	0,372	0,433	10,53	Kg/m² KN/m²	225 2,21	1 60 1,57	120 1,18	90 0.88	70 0,68	245 2,41	182 1,78	140 1,37	115 1,13	90 0,88
				Kg/m²	,			- ,	,	,		181	141	115
60	0,313	0,364	10,91	KN/m²	289 2,83	216 2,12	142 1,39	115 1,13	85 0,83	321 3,15	237 2,32	1,77	1,38	1,13
80	0,237	0,276	11,67	Kg/m² KN/m²	455 4.46	316 3,09	227 2,22	160 1,57	120 1,18	500 4,91	365 3,58	280 2,74	215 2,11	145 1,42
100	0,191	0,222	12,63	Kg/m² KN/m²	470 4,60	345 3,38	260 2,55	200 1,96	160 1,57	510 4,99	390 3,82	285 2,79	225 2,20	180 1,76

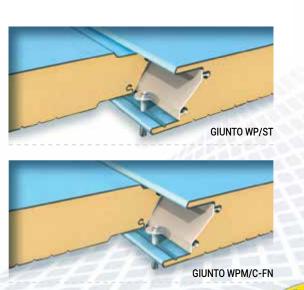
CONDIZIONI DI CARICO CON SUPPORTI IN ACCIAIO

CONDIZIONI DI CARICO CON SUPPORTI IN ACCIAIO

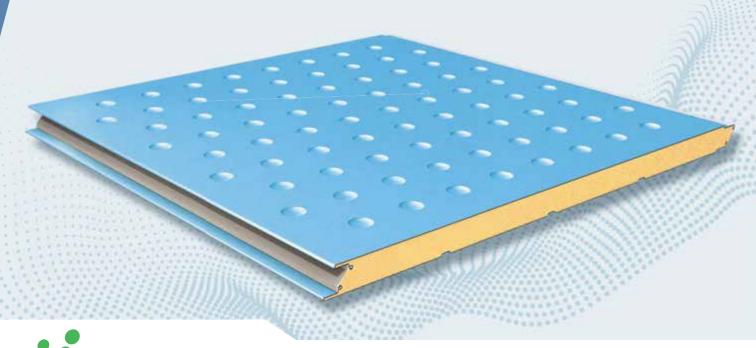
1 valori dei carichi riportati nelle tabelle sono indicativi; si riferiscono ad una freccia f ≤ 1/200 della luce ℓ (m) per pannelli con spessore dei supporti in ACCIAIO 0,5+0,5 mm.


Per il dimensionamento e la verifica riferirsi all'allegato E della norma UNI EN 14509 e ai valori dichiarati nella marcatura C €. La lettera ① ⑥ indica il lato eventualmente preverniciato.


	ISOLAMENT	O TERMICO				(CONDIZIONI D	CARICO - C	arichi utili di ese	rcizio uniformer	nente distribuit	i in KG/m² - KN/m²		
S	Kcal L	J w	peso	U.M.				DIS	TANZA TRA GL	I APPOGGI IN	Imℓ			
spessore mm	m²- h -°C	m² -°C	Kg/m²		2,00	2,50	3,00	3,50	4,00	2,00	2,50	3,00	3,50	4,00
40	0,461	0,536	5,16	Kg/m² KN/m²	108 1,06	64 0,62	41 0,40	27 0,26	19 0,18	149 1,46	95 0,93	64 0,63	44 0,43	32 0,31
50	0,372	0,433	5,56	Kg/m² KN/m²	150 1,47	92 0,90	60 0,58	41 0,40	29 0,28	194 1,90	129 1,26	89 0,87	63 0,61	46 0,45
60	0,313	0,364	5,96	Kg/m² KN/m²	191 1,87	121 1,18	81 0,79	56 0,55	40 0,39	237 2,32	162 1,59	114 1,11	83 0,81	62 0,61
80	0,237	0,276	6,76	Kg/m² KN/m²	272 2,67	180 1,76	125 1,22	89 0,87	65 0,63	317 3,11	225 2,20	165 1,62	124 1,21	95 0,93
100	0,191	0,222	7,56	Kg/m ² KN/m ²	290 2,84	235 2,30	180 1,76	110 1,08	90 0,88	310 2,94	255 2,49	190 1,86	135 1,32	100 0,98


CONDIZIONI DI CARICO CON SUPPORTI IN ALLUMINIO

I valori dei carichi riportati nelle tabelle sono indicativi; si riferiscono ad una freccia f≤1/200 della luce ℓ(m) per pannelli con spessore dei supporti in ALLUMINIO 0,6+0,6 mm. Per il dimensionamento e la verifica riferirsi all'allegato E della norma UNI EN 14509 e ai valori dichiarati nella marcatura C €. La lettera ① ② indica il lato eventualmente prevernicia



TERMOPARETI® BUBBLE

Caratteristiche tecnico-prestazionali:

Supporti: ACCIAIO - S 250 GD conforme alla norma UNI EN 10346 aventi caratteristiche meccaniche non inferiori a quelle previste dal D.M. del 14/01/2008 e tolleranze secondo la norma UNI EN 10143 ALLUMINIO - UNI EN 1396, con carico di rottura minimo 150 MPa

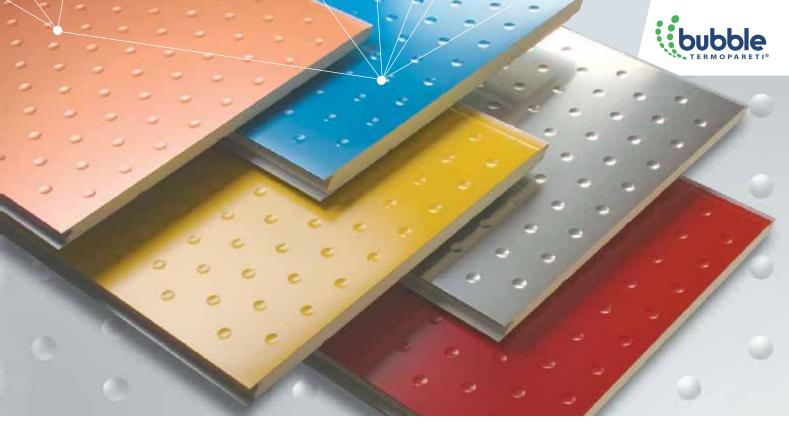
RAME - UNI EN 1172 COR-TEN

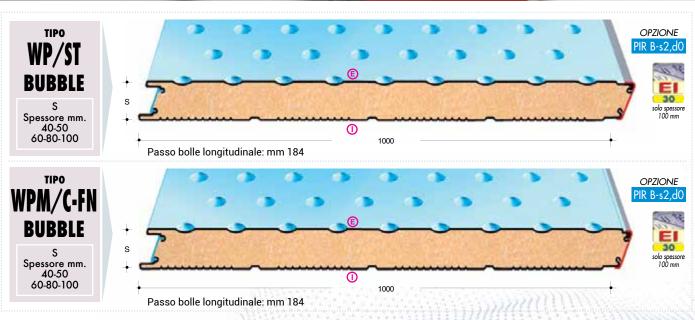
ACCIAIO INOSSIDABILE - Secondo norma UNI EN 10088-1

Isolante: PUR Densità ~ 40 Kg/m3 Spessori: mm. 40-50-60-80-100 Modulo base: Larghezza mm. 1000 I pannelli TERMOPARETI® BUBBLE (brevettati) vengono prodotti in varie tipologie e sono stati progettati per essere utilizzati nell'edilizia industriale, commerciale, residenziale e dei servizi ove si voglia ottenere effetti architettonici estremamente originali, diversi dai pannelli tradizionali; si applica su qualsiasi progetto sia per nuove costruzioni che per ristrutturazioni. Possono essere utilizzati per pareti continue e/o discontinue esterne, divisori interni e controsoffitti. Grazie alle sue caratteristiche il prodotto trova un vasto impiego laddove si richiede un'elevato ed insolito standard architettonico. La vasta gamma di tipologie, materiali e colori, offre ad architetti, progettisti, utilizzatori finali un'ampia libertà di scelta. Possono essere applicati su strutture di ogni genere: metalliche, calcestruzzo e legno. Gli stessi vengono installati in posizione verticale, orizzontale oppure inclinati e sono collegati ad incastro tra loro, fissati con specifici accessori. La particolarità dei pannelli **BUBBLE**, è la presenza su tutta la superficie del lato esterno, di impronte sferiche ricavate per stampaggio sulla lamiera di base, in modo da dare un effetto ad alto valore architettonico ai rivestimenti costruiti con esso. Le impronte sono negative rispetto al piano esterno della lamiera e possono essere realizzate su tutti i materiali di normale uso per profilatura, come ad esempio acciaio preverniciato e/o zincato, alluminio, acciaio inox e rame. Elementi di finitura a taglio termico, quali angoli curvi, angoli retti, spigoli ed ottavi di sfera completano e valorizzano ancora di più le TERMOPARETI® BUBBLE.

	ISOLAMENT	O TERMICO				(CONDIZIONI D	I CARICO - C	arichi utili di ese	rcizio uniformen	nente distribuiti	in KG/m² - KN/m²		
S	Kcal L	J _W	peso	U.M.				DIS	TANZA TRA GL	I APPOGGI IN	Imℓ			
spessore mm	m²- h -°C	m² -°C	Kg/m²		2,00	2,50	3,00	3,50	4,00	2,00	2,50	3,00	3,50	4,00
40	0.461	0.536	10.15	Kg/m²	166	125	90	70	55	178	140	108	85	70
40	0,461	0,536	10,15	KN/m ²	1,63	1,22	0,88	0,68	0,54	1,74	1,37	1,05	0,83	0,68
50	0,372	0,433	10.53	Kg/m ²	225	160	120	90	70	245	182	140	115	90
30	0,372	0,433	10,55	KN/m ²	2,21	1,57	1,18	0,88	0,68	2,41	1,78	1,37	1,13	0,88
60	0,313	0.364	10.91	Kg/m²	289	216	142	115	85	321	237	181	141	115
00	0,313	0,304	10,91	KN/m²	2,83	2,12	1,39	1,13	0,83	3,15	2,32	1,77	1,38	1,13
80	0.237	0.276	11,67	Kg/m²	455	316	227	160	120	500	365	280	215	145
80	0,237	0,270	11,07	KN/m ²	4.46	3,09	2,22	1,57	1,18	4,91	3,58	2,74	2,11	1,42
100	0.191	0,222	12,63	Kg/m²	470	345	260	200	160	510	390	285	225	180
. 30	0,101	0,222	12,00	KN/m ²	4,60	3,38	2,55	1,96	1,57	4,99	3,82	2,79	2,20	1,76

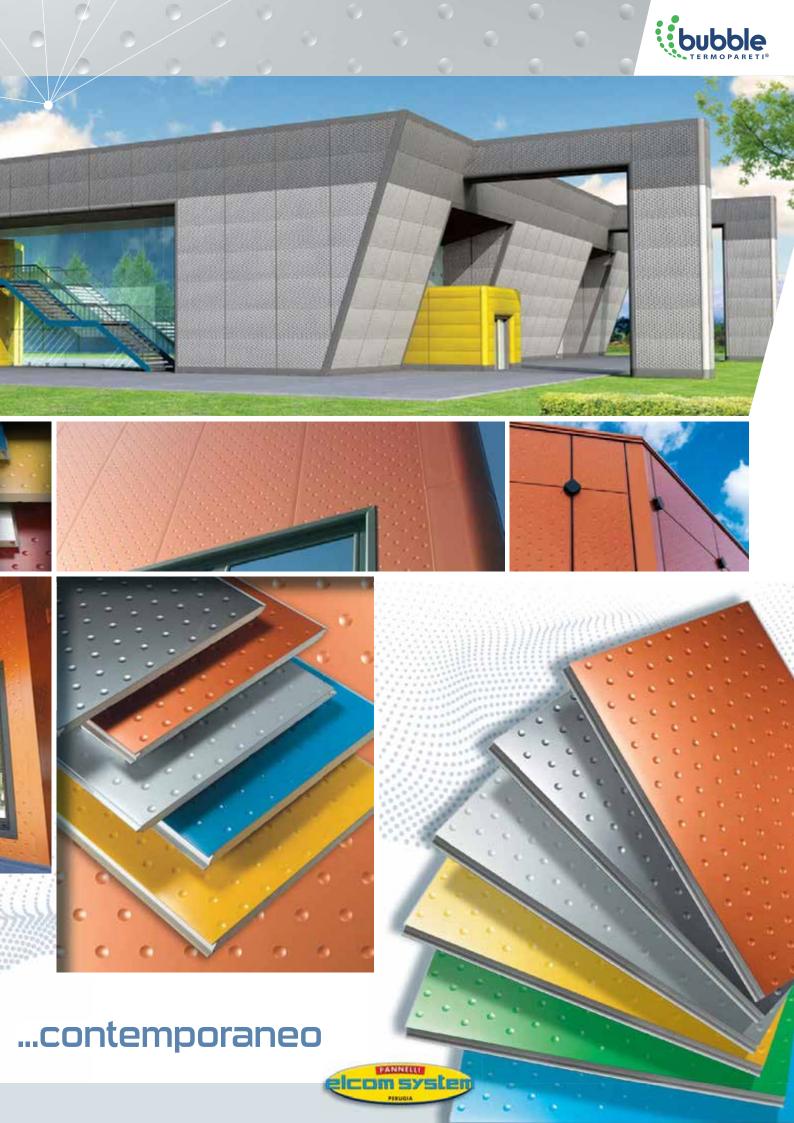
CONDIZIONI DI CARICO CON SUPPORTI IN ACCIAIO

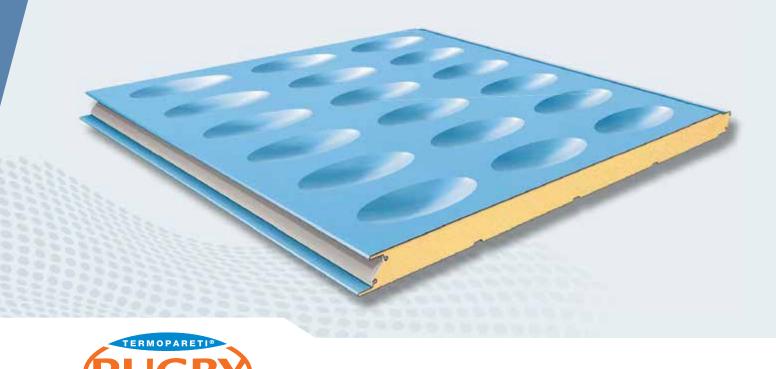

CONDIZIONI DI CARICO CON SOPPORTTIN ACCIAIO 1,5+0,5 mm. I valori dei carichi riportati nelle tabelle sono indicativi; si riferiscono ad una freccia f ≤ 1/200 della luce ℓ (m) per pannelli con spessore dei supporti in **ACCIAIO** 0,5+0,5 mm. Per il dimensionamento e la verifica riferirsi all'allegato E della norma UNI EN 14509 e ai valori dichiarati nella marcatura C €. La lettera () (indica il lato eventualmente preverniciato.


	ISOLAMENT	O TERMICO				(CONDIZIONI DI	CARICO - C	arichi utili di ese	rcizio uniformen	nente distribuiti	in KG/m² - KN/m²		
S	Kcal U	J _W	peso	U.M.				DIS	TANZA TRA GL	I APPOGGI IN	mℓ	Δ (Δ (Δ (Δ		
spessore mm	m²- h -°C	m² -°C	Kg/m²		2,00	2,50	3,00	3,50	4,00	2,00	2,50	3,00	3,50	4,00
40	0,461	0,536	5,16	Kg/m² KN/m²	108 1,06	64 0,62	41 0,40	27 0,26	19 0,18	149 1,46	95 0,93	64 0,63	44 0,43	32 0,31
50	0,372	0,433	5,56	Kg/m ² KN/m ²	150 1,47	92 0,90	60 0,58	41 0,40	29 0,28	194 1,90	129 1,26	89 0,87	63 0,61	46 0,45
60	0,313	0,364	5,96	Kg/m ² KN/m ²	191 1,87	121 1,18	81 0,79	56 0,55	40 0,39	237 2,32	162 1,59	114 1,11	83 0,81	62 0,61
80	0,237	0,276	6,76	Kg/m² KN/m²	272 2,67	180 1,76	125 1,22	89 0,87	65 0,63	317 3,11	225 2,20	165 1,62	124 1,21	95 0,93
100	0,191	0,222	7,56	Kg/m ² KN/m ²	290 2,84	235 2,30	180 1,76	110 1,08	90 0,88	310 2,94	255 2,49	190 1,86	135 1,32	100 0,98

CONDIZIONI DI CARICO CON SUPPORTI IN ALLUMINIO

I valori dei carichi riportati nelle tabelle sono indicativi; si riferiscono ad una freccia f≤1/200 della luce ℓ(m) per pannelli con spessore dei supporti in ALLUMINIO 0,6+0,6 mm.
Per il dimensionamento e la verifica riferirsi all'allegato E della norma UNI EN 14509 e ai valori dichiarati nella marcatura C €. La lettera ① ⑥ indica il lato eventualmente preverniciato





Caratteristiche tecnico-prestazionali:

Supporti: ACCIAIO - S 250 GD conforme alla norma UNI EN 10346 aventi caratteristiche meccaniche non inferiori a quelle previste dal D.M. del 14/01/2008 e tolleranze secondo la norma UNI EN 10143 ALLUMINIO - UNI EN 1396, con carico di rottura minimo 150 MPa

RAME - UNI EN 1172 COR-TEN

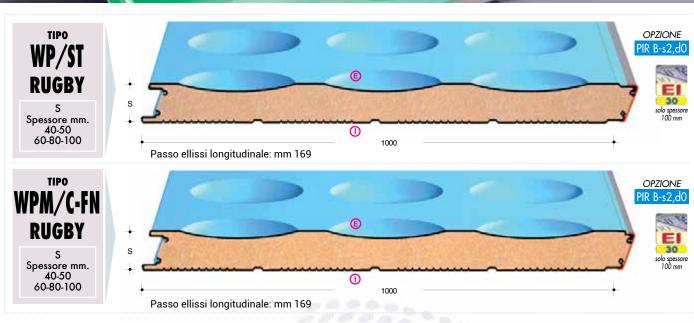
ACCIAIO INOSSIDABILE - Secondo norma UNI EN 10088-1

Isolante: PUR Densità ~ 40 Kg/m3 **Spessori**: mm. 40-50-60-80-100 Modulo base: Larghezza mm. 1000 I pannelli TERMOPARETI® RUGBY (brevettati) sono stati progettati per ottenere originali facciate architettoniche con un elevato ed insolito design innovativo fino ad oggi trascurato nel settore dei pannelli termoisolanti. Prodotti in vari spessori e colori, sono utilizzati in edilizia industriale-commerciale-civile e dei servizi, sia per nuove costruzioni che per ristrutturazioni. La particolarità è la presenza sul lato in vista di importanti e significative impronte "ellittiche" ricavate per stampaggio. Le impronte sono negative rispetto al piano esterno della lamiera e possono essere realizzate su tutti i materiali di normale uso per profilatura, come acciaio preverniciato, alluminio, acciaio inox e rame. Elementi di finitura a taglio termico, quali angoli curvi, angoli retti, spigoli ed ottavi di sfera, completano e valorizzano ancora di più le TERMOPARETI® RUGBY.

	ISOLAMENT	O TERMICO					CONDIZIONI D	OI CARICO - C	arichi utili di ese	rcizio uniformer	nente distribuiti	in KG/m² - KN/m²		
S	Kcal L	J _w	peso	U.M.				DIS	TANZA TRA GI	LI APPOGGI IN	Imℓ	△ ℓ △ ℓ △ ℓ △		
spessore mm	m²-h-°C	m² -°C	Kg/m²		2,00	2,50	3,00	3,50	4,00	2,00	2,50	3,00	3,50	4,00
40	0,461	0,536	10,15	Kg/m ² KN/m ²	166	125	90	70	55	178	140 1,37	108 1,05	85 0,83	70 0,68
					1,63	1,22	0,88	0,68	0,54	1,74				
50	0,372	0,433	10,53	Kg/m ² KN/m ²	225 2,21	160 1,57	120 1,18	90 0,88	70 0,68	245 2,41	182 1,78	140 1,37	115 1,13	90 0,88
60	0,313	0,364	10,91	Kg/m² KN/m²	289 2,83	216 2,12	142 1,39	115 1,13	85 0,83	321 3,15	237 2,32	181 1,77	141 1,38	115 1,13
80	0,237	0,276	11,67	Kg/m² KN/m²	455 4.46	316 3,09	227 2,22	160 1,57	120 1,18	500 4,91	365 3,58	280 2,74	215 2,11	145 1,42
100	0,191	0,222	12,63	Kg/m² KN/m²	470 4,60	345 3,38	260 2,55	200 1,96	160 1,57	510 4,99	390 3,82	285 2,79	225 2,20	180 1,76

CONDIZIONI DI CARICO CON SUPPORTI IN ACCIAIO

Unibilitien de la bella telegration de la verifica riferirsi all'allegato E della norma UNI EN 14509 e ai valori dichiarati nella marcatura C €. La lettera ① ⑥ indica il lato eventualmente preverniciato.


	ISOLAMENT	O TERMICO					CONDIZIONI D	CARICO - C	arichi utili di ese	rcizio uniformer	nente distribuiti	in KG/m² - KN/m²		
S	Kcal L	J _W	peso	U.M.				DIS	TANZA TRA GL	I APPOGGI IN	Imℓ			
spessore mm	m²- h -°C	m² -°C	Kg/m²		2,00	2,50	3,00	3,50	4,00	2,00	2,50	3,00	3,50	4,00
40	0,461	0,536	5,16	Kg/m² KN/m²	108 1,06	64 0,62	41 0,40	27 0,26	19 0,18	149 1,46	95 0,93	64 0,63	44 0,43	32 0,31
50	0,372	0,433	5,56	Kg/m² KN/m²	150 1,47	92 0,90	60 0,58	41 0,40	29 0,28	194 1,90	129 1,26	89 0,87	63 0,61	46 0,45
60	0,313	0,364	5,96	Kg/m² KN/m²	191 1,87	121 1,18	81 0,79	56 0,55	40 0,39	237 2,32	162 1,59	114 1,11	83 0,81	62 0,61
80	0,237	0,276	6,76	Kg/m² KN/m²	272 2,67	180 1,76	125 1,22	89 0,87	65 0,63	317 3,11	225 2,20	165 1,62	124 1,21	95 0,93
100	0,191	0,222	7,56	Kg/m ² KN/m ²	290 2,84	235 2,30	180 1,76	110 1,08	90 0,88	310 2,94	255 2,49	190 1,86	135 1,32	100 0,98

CONDIZIONI DI CARICO CON SUPPORTI IN ALLUMINIO

I valori dei carichi riportati nelle tabelle sono indicativi; si riferiscono ad una freccia f≤1/200 della luce ℓ(m) per pannelli con spessore dei supporti in ALLUMINIO 0,6+0,6 mm. Per il dimensionamento e la verifica riferirsi all'allegato E della norma UNI EN 14509 e ai valori dichiarati nella marcatura C €. La lettera ① ② indica il lato eventualmente prevernicia

Caratteristiche tecnico-prestazionali:

Supporti: ACCIAIO - S 250 GD conforme alla norma UNI EN 10346 aventi caratteristiche meccaniche non inferiori a quelle previste dal D.M. del 14/01/2008 e tolleranze secondo la norma UNI EN 10143 ALLUMINIO - UNI EN 1396, con carico di rottura minimo 150 MPa

RAME - UNI EN 1172 COR-TEN

ACCIAIO INOSSIDABILE - Secondo norma UNI EN 10088-1

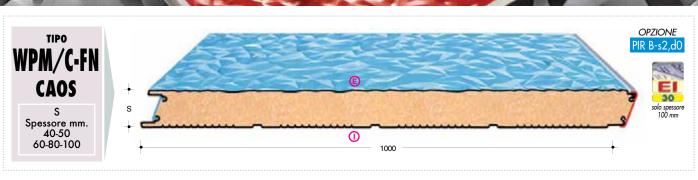
Isolante: PUR Densità ~ 40 Kg/m3 Spessori: mm. 40-50-60-80-100 Modulo base: Larghezza mm. 1000 I pannelli TERMOPARETI® CAOS (brevettati) sono stati progettati per essere utilizzati nell'edilizia industriale, commerciale, residenziale e dei servizi ove si voglia ottenere effetti architettonici estremamente originali; CAOS si applica su qualsiasi progetto sia per nuove costruzioni che per ristrutturazioni. Possono essere utilizzati per pareti continue e/o discontinue esterne, divisori, ambientazioni interne e controsoffitti. Grazie alle sue caratteristiche CAOS trova un vasto impiego laddove si richiede un elevato ed insolito standard architettonico. La vasta gamma di materiali e colori, offre ad architetti, progettisti e utilizzatori finali un'ampia libertà di scelta. I pannelli CAOS possono essere applicati su strutture di ogni genere: metalliche, calcestruzzo e legno. Gli stessi vengono installati in posizione verticale, orizzontale oppure inclinati e sono collegati ad incastro tra loro, fissati con specifici accessori. La particolarità dei pannelli CAOS, è la presenza su tutta la superficie del lato esterno, di particolari e variegate forme geometriche ricavate con un innovativo ed unico sistema ideato appositamente da ELCOM SYSTEM s.p.a. per la "formatura" della lamiera di base, ottenendo un effetto superficiale estremamente dinamico mai visto prima nel mondo dei pannelli metallici coibentati. Le impronte sono positive rispetto al piano esterno della lamiera e possono essere realizzate su tutti i materiali di normale uso per profilatura, come ad esempio acciaio preverniciato e/o zincato, alluminio, acciaio inox e rame. Elementi di finitura a taglio termico, quali angoli curvi, angoli retti, spigoli ed ottavi di sfera completano e valorizzano ancora di più le TERMOPARETI® CAOS.

	ISOLAMENT	O TERMICO				(CONDIZIONI D	I CARICO - C	arichi utili di ese	rcizio uniformen	nente distribuiti	in KG/m² - KN/m²		
S	Kcal L	J _w	peso	U.M.				DIS	TANZA TRA GL	I APPOGGI IN	m ℓ	△ ℓ △ ℓ △ ℓ △		
spessore mm	m²- h -°C	m² -°C	Kg/m²		2,00	2,50	3,00	3,50	4,00	2,00	2,50	3,00	3,50	4,00
40	0.461	0.536	10,15	Kg/m²	166	125	90	70	55	178	140	108	85	70
40	0,461	0,536	10,15	KN/m ²	1,63	1,22	0,88	0,68	0,54	1,74	1,37	1,05	0,83	0,68
50	0,372	0,433	10.52	Kg/m²	225	160	120	90	70	245	182	140	115	90
30	0,372	0,433	10,53	KN/m ²	2,21	1,57	1,18	0,88	0,68	2,41	1,78	1,37	1,13	0,88
60	0.313	0.364	10.01	Kg/m²	289	216	142	115	85	321	237	181	141	115
60	0,313	0,304	10,91	KN/m²	2,83	2,12	1,39	1,13	0,83	3,15	2,32	1,77	1,38	1,13
80	0.027	0.076	11.67	Kg/m²	455	316	227	160	120	500	365	280	215	145
80	0,237	0,276	11,67	KN/m ²	4.46	3,09	2,22	1,57	1,18	4,91	3,58	2,74	2,11	1,42
100	0.191	0.222	12.63	Kg/m²	470	345	260	200	160	510	390	285	225	180
.50	0,191	0,222	12,03	KN/m²	4,60	3,38	2,55	1,96	1,57	4,99	3,82	2,79	2,20	1,76

CONDIZIONI DI CARICO CON SUPPORTI IN ACCIAIO

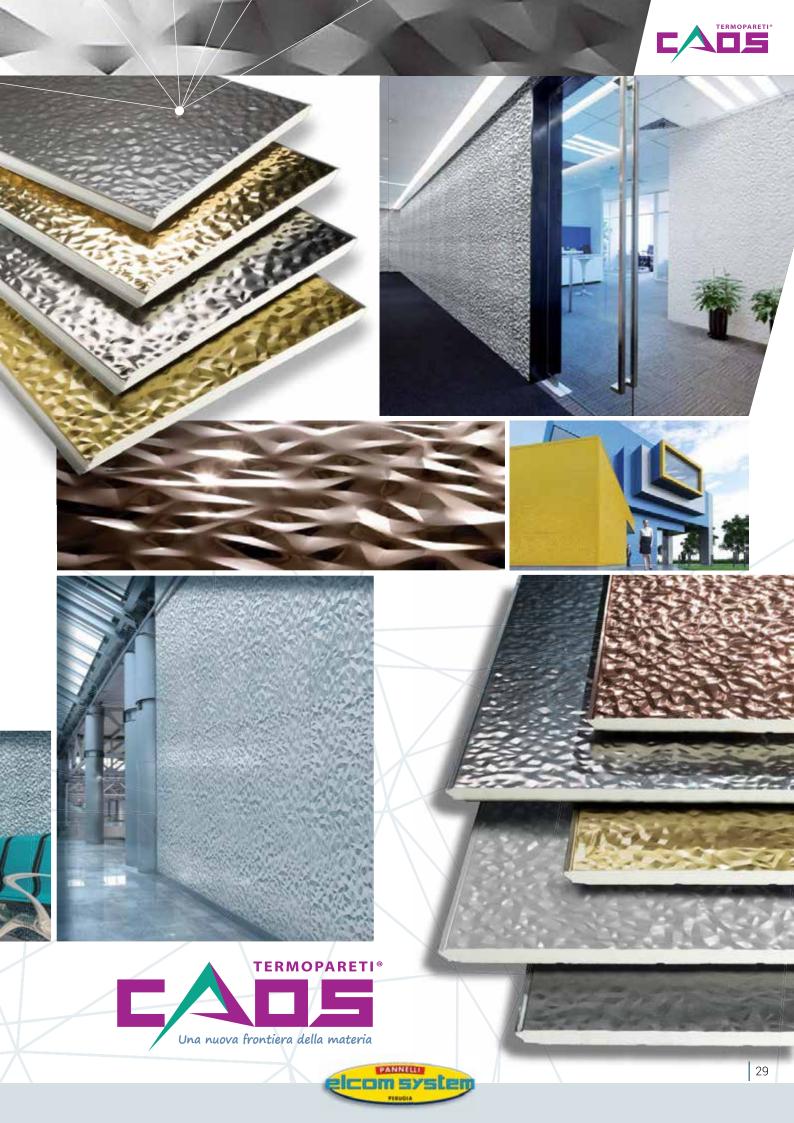
Under dei carichi riportati nelle tabelle sono indicativi; si riferiscono ad una freccia f≤ 1/200 della luce ℓ (m) per pannelli con spessore dei supporti in ACCIAIO 0,5+0,5 mm.

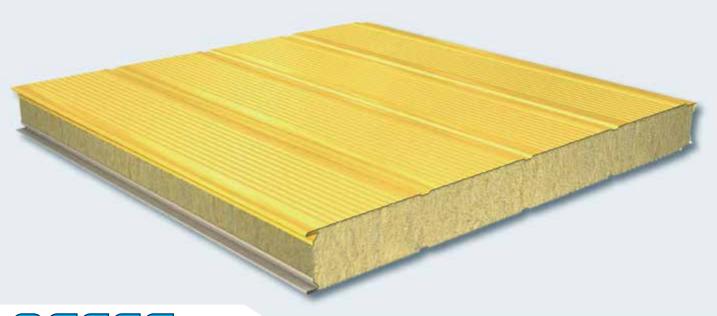
Per il dimensionamento e la verifica riferirsi all'allegato E della norma UNI EN 14509 e ai valori dichiarati nella marcatura C €. La lettera ① ⑥ indica il lato eventualmente preverniciato.

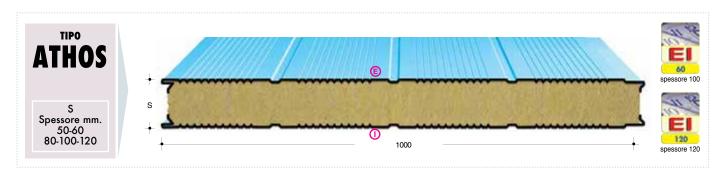

	ISOLAMENT	O TERMICO				(CONDIZIONI DI	CARICO - C	arichi utili di ese	rcizio uniformen	nente distribuiti	in KG/m² - KN/m²		
S	Kcal L	J _W	peso	U.M.				DIS	TANZA TRA GL	I APPOGGI IN	m ℓ			
spessore mm	m²- h -°C	m² -°C	Kg/m²		2,00	2,50	3,00	3,50	4,00	2,00	2,50	3,00	3,50	4,00
40	0,461	0,536	5,16	Kg/m² KN/m²	108 1,06	64 0,62	41 0,40	27 0,26	19 0,18	149 1,46	95 0,93	64 0,63	44 0,43	32 0,31
50	0,372	0,433	5,56	Kg/m ² KN/m ²	150 1,47	92 0,90	60 0,58	41 0,40	29 0,28	194 1,90	129 1,26	89 0,87	63 0,61	46 0,45
60	0,313	0,364	5,96	Kg/m² KN/m²	191 1,87	121 1,18	81 0,79	56 0,55	40 0,39	237 2,32	162 1,59	114 1,11	83 0,81	62 0,61
80	0,237	0,276	6,76	Kg/m² KN/m²	272 2,67	180 1,76	125 1,22	89 0,87	65 0,63	317 3,11	225 2,20	165 1,62	124 1,21	95 0,93
100	0,191	0,222	7,56	Kg/m ² KN/m ²	290 2,84	235 2,30	180 1,76	110 1,08	90 0,88	310 2,94	255 2,49	190 1,86	135 1,32	100 0,98

CONDIZIONI DI CARICO CON SUPPORTI IN ALLUMINIO

I valori dei carichi riportati nelle tabelle sono indicativi; si riferiscono ad una freccia f≤1/200 della luce ℓ(m) per pannelli con spessore dei supporti in ALLUMINIO 0,6+0,6 mm. Per il dimensionamento e la verifica riferirsi all'allegato E della norma UNI EN 14509 e ai valori dichiarati nella marcatura C €. La lettera ① (€) indica il lato eventualmente preverniciati







REFFE ATHOS

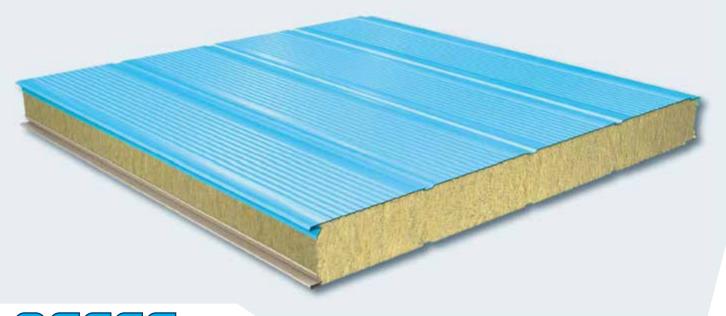
	ISOLAMENT	O TERMICO)				CON	IDIZIONI DI	CARICO - 0	Carichi utili di es	sercizio uniform	emente distril	buiti in KG/m²	- KN/m²		
S	U	l	peso	U.M.			•		DIST	TANZA TRA GI		d m/		<u> </u>		
spessore	_Kcal	W	W / 2	0.711.	4 50	2 2 2 2	0.50						0.50	٠	Δ <i>l</i> Δ	ι Δ 400
mm	m²- h -°C	m² -°C	Kg/m²		1,50	2,00	2,50	3,00	3,50	4,00	1,50	2,00	2,50	3,00	3,50	4,00
50	0,65	0,75	14,00	Kg/m²	145	117	95	73	60	49	130	103	82	62	52	45
30	0,03	0,/3	14,00	KN/m^2	1,42	1,15	0,93	0,72	0,59	0,48	1,28	1,01	0,80	0,61	0,51	0,44
				Kg/m ²	182	146	117	95	73	60	168	133	104	84	65	57
60	0,55	0,64	14,90	KN/m²	1.79	1,43	1.15	0.93	0.72	0,59	1,65	1.30	1.02	0,82	0,64	0,56
				Kg/m²	230	183	152	125	100	82	216	170	139	114	93	77
80	0,42	0,49	16,70	KN/m ²	2,26	1,80	1.49	1.23	0.98	0,80	2,12	1.67	1.36	1.12	0.91	0,76
				Kg/m²	310	253	207	165	134	104	296	240	194	154	125	100
100	0,34	0,40	18,50													
	.,.	-7 -	.,	KN/m²	3,04	2,48	2,03	1,62	1,32	1,02	2,90	2,35	1,90	1,51	1,23	0,98
120	0.30	0,35	20,40	Kg/m²	340	280	215	180	150	110	325	265	195	167	137	106
120	0,30	0,33	20,40	KN/m^2	3,33	2,74	2,11	1,76	1,47	1,08	3,19	2,60	1,91	1,64	1,34	1,04

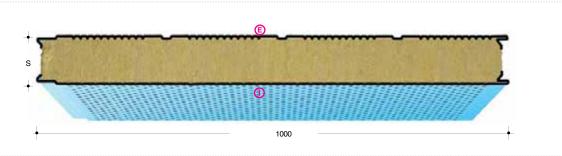
I valori indicati nelle tabelle prevedono una freccia f \leq 1/200 della luce ℓ (m) e si riferiscono ai pannelli con spessore dei supporti in acciaio 0,5+0,6 mm. La lettera () (a) indica il lato eventualmente preverniciato.

Densità media lana di roccia: 100 Kg/m³ - Valori minimi garantiti ricavati da prove effettuate dall'Università degli Studi di Perugia, Facoltà di Ingegneria, Dipartimento di Ingegneria Industriale (Centro Prove Sperimentali)

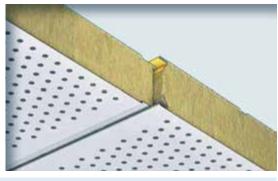
Il Prodotto. I pannelli serie AEFFE ATHOS sono ottenuti incollando in processo continuo due supporti metallici con un materassino di lana di roccia. Il loro uso è indispensabile quando occorre ottenere da una parete, un elevato isolamento acustico, un buon isolamento termico, uniti ad una incombustibilità ed a una elevata resistenza al fuoco.

Materiali di supporto. Sono ricavati da nastri di lamiera generalmente in acciaio zincato a caldo S250GD conformi alla norma UNI EN 10346 e/o finitura con un rivestimento organico con caratteristiche secondo le specifiche della norma UNI EN 10169 profilati a freddo. A richiesta possono essere forniti anche materiali diversi come acciaio inosidabile conforme alla norma EN 10088-1 oppure alluminio conforme alla norma UNI EN 1396. **Isolamento.** L'isolamento all'interno dei supporti è realizzato mediante un materassino in lana di roccia a fibre orientate disposte ortogonalmente al piano delle lamiere (densità 100 Kg/m³) che conferisce una maggiore monoliticità al pannello e ne migliora le prestazioni meccaniche. Coeficiente di conduttività termica della lana di roccia: $λ = 0,041 \div 0,045$ W/mK. L'utilizzo della lana di roccia a fibre orientate conferisce al pannello ottime caratteristiche di fonoassorbenza su un largo spettro di frequenza, specialmente se viene utilizzato un supporto microforato da porre dalla parte di provenienza del rumore.

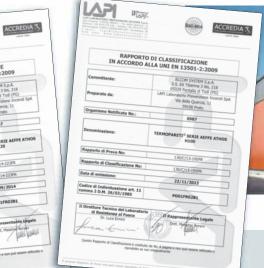

Prestazioni meccaniche. I valori di portata in tabella sono stati calcolati secondo le istruzioni CNR 10022/87 ed ECCS suffragate da una serie di prove di carico uniformemente ripartito eseguite dalla Facoltà di Ingegneria dell'Università degli Studi di Perugia, Dipartimento Ingegneria Industriale (Centro Prove Sperimentali).



TERMOPARETI® serie REFFE ATHOS TERMOFONISOL



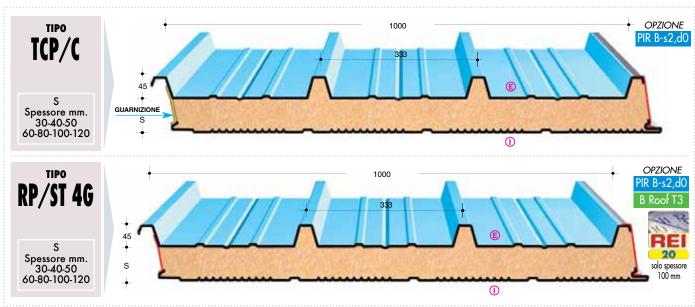
AFFE ATHOS TERMOFONISOL



	ISOLAMEN	TO TERMICO			CONDIZIONI DI CARICO - Carichi utili di esercizio				
S	U		peso	U.M.	uniformemente distribuiti in KG/m² - KN/m²				
spessore	Kcal	W			DISTANZA TRA GLI APPOGGI IN m 🕻 📜				
mm	m²- h -°C	m² -°C	Kg/m²		1,50	2,00	2,50	3,00	
50	0,65	0,75	12,10	Kg/m²	90	63	38	22	
50				KN/m^2	0,88	0,62	0,37	0,22	
	0.55	0.74	12.00	Kg/m ²	113	78	47	28	
60	0,55	0,64	13,00	KN/m²	1,11	0,76	0,46	0,27	
	0,42	0,49	14,80	Kg/m ²	143	99	61	38	
80				KN/m²	1,40	0,97	0,60	0,37	
400	0.24	0.40	17.70	Kg/m ²	160	115	75	48	
100	0,34	0,40	16,60	KN/m²	1,57	1,13	0,74	0,47	
400	0.00	0.05	10.50	Kg/m ²	175	130	90	60	
120	0,30	0,35	18,50	KN/m²	1,72	1,27	0,88	0,59	

l valori indicati nelle tabelle prevedono una freccia f ≤ 1/200 della luce ℓ (m) e si riferiscono ai pannelli con spessore dei supporti in acciaio 0,5+0,6 mm. La lettera () (2) indica il lato eventualmente preverniciato.

Densità media lana di roccia: 100 Kg/m³ - Valori minimi garantiti ricavati da prove effettuate dall'Università degli Studi di Perugia, Facoltà di Ingegneria, Dipartimento di Ingegneria Industriale (Centro Prove Sperimentali).



TERMOCOPERTURE®

PIC										
TCP/C P/ST 4G ISOLAMENTO TERMICO				CONDIZIONI DI CARICO - Carichi utili di esercizio uniformemente distribuiti in KG/m² - KN/m²						
S	Kcal (J _w	peso	U.M.	DISTANZA TRA GLI APPOGGI IN m ℓ PER SINGOLA CAMPATA					
spessore mm	m²- h -°C	m² -°C	Kg/m²		2,00	2,50	3,00	3,50	4,00	
30	0,602	0,700	7,93	Kg/m² KN/m²	211 2,08	121 1,19	75 0,74	48 0,47	32 0,31	
40	0,461	0,536	8,31	Kg/m² KN/m²	257 2,53	154 1,51	98 0,97	65 0,65	45 0,44	
50	0,372	0,433	8,68	Kg/m² KN/m²	305 3,00	189 1,85	124 1,22	85 0,84	60 0,59	
60	0,313	0,364	9,06	Kg/m² KN/m²	355 3,49	225 2,21	152 1,49	106 1,04	76 0,75	
80	0,237	0,276	9,82	Kg/m² KN/m²	457 4,49	302 2,96	210 2,07	152 1,49	112 1,10	
100	0,191	0,222	10,57	Kg/m² KN/m²	562 5,52	382 3,75	273 2,68	201 1,98	151 1,49	
120	0,166	0,193	11,33	Kg/m² KN/m²	669 6,56	463 4,55	337 3,31	253 2,49	194 1,90	

TO RP/

CONDIZIONI DI CARICO CON SUPPORTI IN ACCIAIO:
I valori dei carichi riportati nelle tabelle sono indicativi; si riferiscono ad una freccia f ≤ 1/200 della luce ℓ (m) per pannelli con spessore dei supporti in ACCIAIO 0,4+0,4 mm. Per il dimensionamento e la verifica riferirsi all allegato E della norma UNI EN 14509 e ai valori dichiarati nella marcatura c ∈ . La lettera ① ⑥ indica il lato eventualmente preverniciato.

CP/											
CPIC AG ISOLAMENTO TERMICO			CONDIZIONI DI CARICO - Carichi utili di esercizio uniformemente distribuiti in KG/m² - KN/m²								
	S	Kcal U W		peso	U.M.	DISTANZA TRA GLI APPOGGI IN m ℓ PER SINGOLA CAMPATA					
	spessore mm	m²- h -°C	m² -°C	Kg/m²		2,00	2,50	3,00	3,50	4,00	
	30	0,602	0,700	10,76	Kg/m²	278	160	99	65	43	
		-,	,	,	KN/m ²	2,73	1,58	0,98	0,64	0,42	
	40	0,461	0,536	11,13	Kg/m²	333	200	129	87	60	
	40	0, 101	0,000	11,10	KN/m ²	3,27	1,96	1,27	0,86	0,59	
	50	0,372	0,433	11,51	Kg/m²	390	242	161	111	79	
	30	0,372	0,433	11,51	KN/m ²	3,83	2,38	1,58	1,09	0,78	
	60	0,313	0,364	11,89	Kg/m²	448	285	194	137	99	
	60	0,515	0,304	11,09	KN/m ²	4,40	2,80	1,91	1,35	0,98	
	80 0,237	0,237	0,276	0.276	12,64	Kg/m²	567	376	265	193	144
	80	0,237		12,04	KN/m ²	5,57	3,69	2,60	1,90	1,42	
	100	0,191	0,222	13,40	Kg/m²	688	469	339	253	193	
	100	0,191	0,222	13,40	KN/m ²	6,76	4,61	3,33	2,49	1,90	
	100	0,166	0.102	1415	Kg/m²	811	565	415	315	244	
	120	0,166	0,193	14,15	KN/m²	7,96	5,54	4,08	3,09	2,40	

CONDIZIONI DI CARICO CON SUPPORTI IN ACCIAIO:
I valori dei carichi riportati nelle tabelle sono indicativi; si riferiscono ad una freccia f ≤ 1/200 della luce ℓ(m) per pannelli con spessore dei supporti in **ACCIAIO** 0,5+0,5 mm. Per il dimensionamento e la verifica riferirsi all allegato E della norma UNI EN 14509 e ai valori dichiarati nella marcatura C €. La lettera ① ⑤ indica il lato eventualmente preverniciato.

UMINIO I	SOLAMENT	O TERMICO					CONDIZIO	NI DI CARI	CO - Carichi u	tili di esercizio ur	niformemente	distribuiti in K	G/m² - KN/m²		
S	Kcal L	Jw	peso	U.M.		Į.	ι Δ		DISTANZA T	RA GLI APPOG	iGI IN mℓ				
spessore mm	m²- h -°C	m² -°C	Kg/m²		1,50	2,00	2,50	3,00	3,50	peso Kg/m²	1,50	2,00	2,50	3,00	3,50
30	0,602	0,700	7,5	Kg/m² KN/m²	285 2,81	185 1,81	120 1,18	70 0,69	40 0,39	5,0	265 2,60	165 1,62	101 1,00	58 0,57	30 0,30
40	0,461	0,536	7,9	Kg/m² KN/m²	355 3,50	230 2,25	160 1,57	96 0,94	60 0,59	5,4	315 3,10	203 2,00	132 1,30	76 0,75	48 0,48
50	0,372	0,433	8,3	Kg/m² KN/m²	417 4,10	278 2,72	197 1,93	125 1,22	80 0,78	5,8	365 3,60	244 2,40	168 1,65	101 1,00	63 0,62
60	0,313	0,364	8,7	Kg/m² KN/m²	468 4,60	325 3,18	237 2,32	157 1,54	104 1,02	6,2	428 4,20	285 2,80	203 2,00	127 1,25	83 0,82
80	0,237	0,276	9,5	Kg/m² KN/m²	509 5,00	430 4,21	315 3,09	225 2,20	155 1,52	7,0	489 4,80	387 3,80	275 2,70	183 1,80	117 1,15
100	0,191	0,222	10,3	Kg/m² KN/m²	565 5,53	452 4,43	342 3,35	286 2,80	215 2,11	7,8	540 5,29	431 4,23	316 3,01	262 2,57	195 1,91
120	0,166	0,193	11,0	Kg/m² KN/m²	635 6,23	525 5,15	415 4,02	330 3,24	260 2,55	8,6	612 6,01	510 5,01	398 3,90	306 3,03	238 2,33
CONDIZIO	NI DI CARIC	0:	CON SUP	PORTO (E)	ALLUMINIO	0,6 mm ()	ACCIAIO 0,5	5 mm		CON SUP	PORTO (E)	ALLUMINIO	0,6 mm ()	ALLUMINIO	0,6 mm

I valori dei carichi riportati nelle tabelle sono indicativi; si riferiscono ad una freccia f ≤ 1/200 della luce ℓ (m). Per il dimensionamento e la verifica riferirsi all allegato E della norma UNI EN 14509 e ai valori dichiarati nella marcatura c ∈. La lettera ⑥ ① indica il lato eventualmente preverniciato.

ZOOTEC

Caratteristiche tecniche:

Supporti metallici esterni: sono ricavati per profilatura a freddo da nastri in coils di diverso materiale: acciaio al carbonio rivestito da uno strato di zinco a caldo; alluminio; rame; acciaio inox. La finitura dei supporti in acciaio e alluminio è costituita da un rivestimento organico mediante ciclo di preverniciatura a caldo standard in poliestere, oppure a richiesta, possono essere forniti rivestimenti diversi come plastificato alimentare o PVDF, ecc.

Supporto interno: lastra in vetroresina (resina poliestere rinforzata con fibre di vetro bianco opalino).

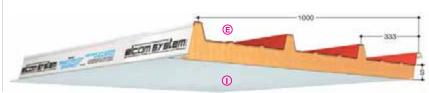
Isolamento: in poliuretano espanso esente da CFC (PUR).

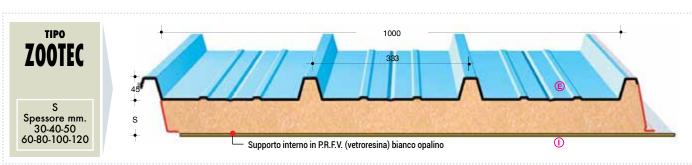
Le caratteristiche principali sono:

- resistenza alla compressione: 140 -150 KPa
- impermeabilità: 98% di cellule chiuse (materiale anigroscopico)

Carichi ammissibili: i valori riportati nelle tabelle, sono valori calcolati secondo le raccomandazioni ECCS ed AIPPEG comprovati da prove sperimentali.

IL PANNELLO "IDEALE" PER LA ZOOTECNIA


TERMICO ad alto potere isolante con speciali schiume poliuretaniche

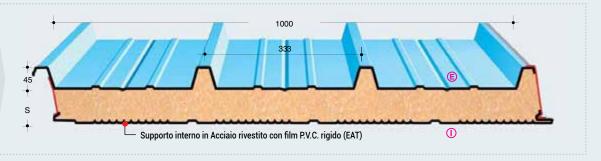

INALTERABILE il tempo non lascia il segno

INDISTRUTTIBILE in ambienti con presenza di esalazioni biologiche (batteri, urea, ammoniaca)

LEGGERO pesa appena 8,00 Kg/m2

UNIVERSALE si adatta a qualsiasi tipo di struttura nuova o esistente

ISOLA	AMENTO TEF	RMICO					CONDI	ZIONI DI	CARICO	O - Carich	ni utili di es	ercizio unife	ormement	te distribu	iti in KG/r	n² - KN/m²		
S	Kcal (J w	spessore lamiera ACCIAIO	U.M.			<u>_</u>			DISTA	NZA TRA GI	LI APPOGG	IN mℓ	<u></u>	(Ţ		
spessore mm	m²- h -°C	m² -°C	mm		1,00	1,50	2,00	2,50	3,00	3,50	4,00	1,00	1,50	2,00	2,50	3,00	3,50	4,00
30	0,602	0,700	0,5	Kg/m²	431	187	101	62	-	-	-	510	222	121	75	49	-	-
30	0,002	0,700	0,5	KN/m ²	4,23	1,83	0,99	0,61	-	-	-	5,00	2,17	1,18	0,73	0,45	-	-
40	0,461	0,536	0,6	Kg/m²	526	229	125	76	41	-	-	620	270	148	91	61	42	-
40	0,401	0,550	0,0	KN/m²	5,16	2,25	1,23	0,75	0,40	-	-	6,08	2,64	1,45	0,89	0,59	0,41	-
50	0,372	0,433	0,8	Kg/m²	702	306	167	103	56	-	-	843	368	202	125	84	58	42
00	0,072	0,100	0,0	KN/m ²	6,89	3,00	1,64	1,01	0,55	-	-	8,26	3,61	1,98	1,22	0,82	0,56	0,41
60	0,313	0,364	1,0	Kg/m ²	878	383	210	129	71	40	-	1067	467	257	160	107	75	54
	0,010	0,001	1,0	KN/m²	8,61	3,76	2,06	1,27	0,70	0,39	-	10,46	4,58	2,52	1,57	1,05	0,74	0,53
80	0,237	0,276	BRIDS CVI	-	- SECOND	M. A	STEWN !	100	100	-	100	28	Charles	4	1776 E	1	WHAT PERSON	185
	-,	-, -	-		-			-			1000					MFT.	-	and the second
100	0,191	0,222			-		-1		-								LL	-
			The state of	A A	178	. 75	-uni		-	NAME OF TAXABLE		-					الال	de la la la
120	0,166	0,193	1	71/16	1		1	With the	1	B	1	_				1	and and	-1-1-4
CONDIZ	IONI DI CARI	ico																



I valori indicati nelle tabelle prevedono una freccia f ≤ 1/200 della luce ℓ (m). - La lettera ⑤ indica il lato eventualmente preverniciato.

TERMOCOPERTURE® serie ZOOTEC EAT

Lato interno finitura liscia

Lato interno finitura micronervata

ZOOTEC EAT

L'EVOLUZIONE DEL PANNELLO PER LA ZOOTECNIA

Il pannello ZOOTEC EAT, con lato interno in acciaio rivestito da film in PVC spessore 120 micron, nasce dall'esigenza di offrire al settore della zootecnia TERMOCOPERTURE® in grado di garantire elevate prestazioni meccaniche e ottima resistenza in ambienti particolarmente aggressivi da esalazioni biologiche e prodotti chimici utilizzati per la pulizia.

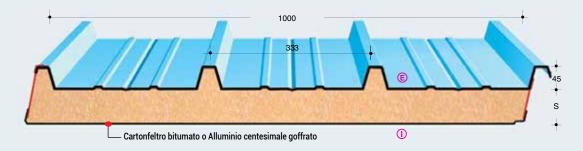
	William Street, Street, Prince	A 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
			-
100000			
200.0			
1200	THE RESIDENCE OF THE PERSON NAMED IN		ted in comments in its
263,259	and in column street		
10000	2012/2012/2017		
ter setteback	Committee of the commit		
74/10/00 N	140		
Commission of the	NAME OF TAXABLE PARTY.		
	555550	9.1579	
3 1020	AND DESIGN	20 Table 2 No.	Marian State of the
3 00000	CONTRACTOR AND ADDRESS OF	12.0	man.
1 1000	Spinish and printed.	Trining	A CONTRACTOR OF THE PERSON NAMED IN
106.16		of projection in	and the
-	PLEASURE STREET		
	-	portubes	-
	STATE OF STA		
-			
Miles II			

	ISOLAMENT	O TERMICO			CONDIZIONI	DI CARICO - Carich	i utili di esercizio unifo	rmemente distribuiti ii	n KG/m² - KN/m²
S	Kcal	J _w	peso	U.M.	DISTA	ANZA TRA GLI APPOG	GI IN m ℓ PER SINGOL	A CAMPATA	mmž
spessore mm	m²- h -°C	m² -°C	Kg/m²		2,00	2,50	3,00	3,50	4,00
30	0,602	0,700	7,93	Kg/m² KN/m²	211 2,08	121 1,19	75 0,74	48 0,47	32 0,31
40	0,461	0,536	8,31	Kg/m² KN/m²	257 2,53	154 1,51	98 0,97	65 0,65	45 0,44
50	0,372	0,433	8,68	Kg/m² KN/m²	305 3,00	189 1,85	124 1,22	85 0,84	60 0,59
60	0,313	0,364	9,06	Kg/m² KN/m²	355 3,49	225 2,21	152 1,49	106 1,04	76 0,75
80	0,237	0,276	9,82	Kg/m² KN/m²	457 4,49	302 2,96	210 2,07	152 1,49	112 1,10
100	0,191	0,222	10,57	Kg/m² KN/m²	562 5,52	382 3,75	273 2,68	201 1,98	151 1,49
120	0,166	0,193	11,33	Kg/m² KN/m²	669 6,56	463 , 4,55	337 3,31	253 2,49	194 1,90

CONDIZIONI DI CARICO CON SUPPORTI IN ACCIAIO:
I valori dei carichi riportati nelle tabelle sono indicativi; si riferiscono ad una freccia f ≤ 1/200 della luce ℓ(m) per pannelli con spessore dei supporti in ACCIAIO 0,4+0,4 mm. Per il dimensionamento e la verifica riferirsi all allegato E della norma UNI EN 14509 e ai valori dichiarati nella marcatura C €. La lettera ① ⑤ indica il lato eventualmente preverniciato.

	ISOLAMEN	TO TERMICO			CONDIZIONI	DI CARICO - Carich	i utili di esercizio unifo	ormemente distribuiti i	n KG/m² - KN/m²
s	Kcal	U w	peso	U.M.	DIST	ANZA TRA GLI APPOG	GI IN m ℓ PER SINGOL	A CAMPATA	
spessore mm	m²-h-°C	m² -°C	Kg/m²		2,00	2,50	3,00	3,50	4,00
30	0,602	0,700	10,76	Kg/m² KN/m²	278 2,73	160 1,58	99 0,98	65 0,64	43 0,42
40	0,461	0,536	11,13	Kg/m² KN/m²	333 3,27	200 1,96	129 1,27	87 0,86	60 0,59
50	0,372	0,433	11,51	Kg/m² KN/m²	390 3,83	242 2,38	161 1,58	111 1,09	79 0,78
60	0,313	0,364	11,89	Kg/m² KN/m²	448 4,40	285 2,80	194 1,91	137 1,35	99 0,98
80	0,237	0,276	12,64	Kg/m² KN/m²	567 5,57	376 3,69	265 2,60	193 1,90	144 1,42
100	0,191	0,222	13,40	Kg/m² KN/m²	688 6,76	469 4,61	339 3,33	253 2,49	193 1,90
120	0,166	0,193	14,15	Kg/m² KN/m²	811 7,96	565 5,54	415 4,08	315 3,09	244 2,40

CONDIZIONI DI CARICO CON SUPPORTI IN ACCIAIO:
I valori dei carichi riportati nelle tabelle sono indicativi; si riferiscono ad una freccia f ≤ 1/200 della luce ℓ(m) per pannelli con spessore dei supporti in ACCIAIO 0,5+0,5 mm. Per il dimensionamento e la verifica riferirsi all allegato E della norma UNI EN 14509 e ai valori dichiarati nella marcatura C €. La lettera 0 0 indica il lato eventualmente preverniciato.


TERMOCOPERTURE® FLEX

® nome brevettato

RP/ST FLEX-AC/CB

AC = Alluminio centesimale CB = Cartonfeltro bitumato

S=Spessore mm. 30-40-50 60-80-100-120

RP/ST FLEX-DECK

S Spessore mm. 30-40-50 60-80-100-120

FLEX

ISOLA	MENTO TER	MICO					CONDI	ZIONI DI	CARICO) - Carich	i utili di es	ercizio unif	ormemen	e distribu	iti in KG/n	n² - KN/m²		
S	Kcal L	J _W	spessore lamiera ACCIAIO	U.M.			Щ	į.	Ą	DISTAN	IZA TRA GI	LI APPOGG	I IN m ℓ	<u></u>		9		
spessore mm	m²- h -°C	m² -°C	mm		1,00	1,50	2,00	2,50	3,00	3,50	4,00	1,00	1,50	2,00	2,50	3,00	3,50	4,00
30	0,602	0,700	0,5	Kg/m² KN/m²	431 4,23	187 1,83	101 0,99	62 0,61	-	-	-	510 5,00	222 2,17	121 1,18	75 0,73	49 0,45	-	-
40	0,461	0,536	0,6	Kg/m² KN/m²	526 5,16	229 2,25	125 1,23	76 0,75	41 0,40	- -	-	620 6,08	270 2,64	148 1,45	91 0,89	61 0,59	42 0,41	- -
50	0,372	0,433	0,8	Kg/m² KN/m²	702 6,89	306 3,00	167 1,64	103 1,01	56 0,55	- -	-	843 8,26	368 3,61	202 1,98	125 1,22	84 0,82	58 0,56	42 0,41
60	0,313	0,364	1,0	Kg/m² KN/m²	878 8,61	383 3,76	210 2,06	129 1,27	71 0,70	40 0,39	-	1067 10,46	467 4,58	257 2,52	160 1,57	107 1,05	75 0,74	54 0,53
80	0,237	0,276																
100	0.404	0.000	CONDIZIO	NI DI CARIO	O (RP/ST	FLEX A	C/CB)											

0,222 CONDIZIONI DI CARICO (RP/ST FLEX AC/CB)
I valori indicati nelle tabelle prevedono una freccia f ≤ 1/200 della luce ℓ(m). - La lettera ⑤ indica il lato eventualmente preverniciato.

10.01		24400																
S	AMENTO TEF		spessore lamiera				CONDIZ	ZIONI DI	CARICO			ercizio unifo LI APPOGGI		пп		п		
spessore mm	Kcal m²- h -°C		ACCIAIO mm	U.M.	1,00	1,50	2,00	، 2,50	3,00	3,50	4,00	1,00	1,50	2,00	ι Δ ι Δ ι . 2,50	3,00	3,50	4,00
30	0,602	0,700	0,5	Kg/m² KN/m²	407 3,99	176 1,73	95 0,93	56 0,55	-	-	-	541 5,31	236 2,31	129 1,26	80 0,78	53 0,52	36 0,35	-
40	0,461	0,536	0,6	Kg/m² KN/m²	494 4,85	215 2,11	117 1,15	71 0,70	37 0,36	-	-	660 6,47	288 2,83	158 1,55	98 0,96	65 0,64	45 0,44	-
50	0,372	0,433	0,8	Kg/m² KN/m²	672 6,59	292 2,86	160 1,57	98 0,96	54 0,53	-	-	881 8,64	385 3,78	212 2,08	131 1,28	88 0,86	62 0,61	41 0,40
60	0,313	0,364	1,0	Kg/m² KN/m²	851 8,35	371 3,64	203 1,99	125 1,23	70 0,69	39 0,38	-	1101 10,80	482 4,73	265 2,60	165 1,62	111 1,09	78 0,76	53 0,52
80	0,237	0,276																
100	0,191	0,222		NI DI CARIC cati nelle tabe				1/200 de	lla luce ℓ(m) La le	ettera 🕕 ir	ndica il lato	eventual	mente pre	verniciato	١.		
120	0,166	0,193																

120

0,166

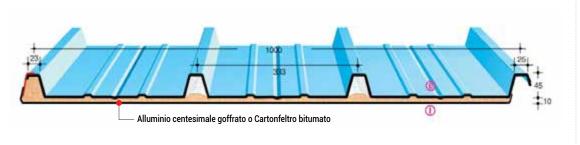
0,193

SLIM

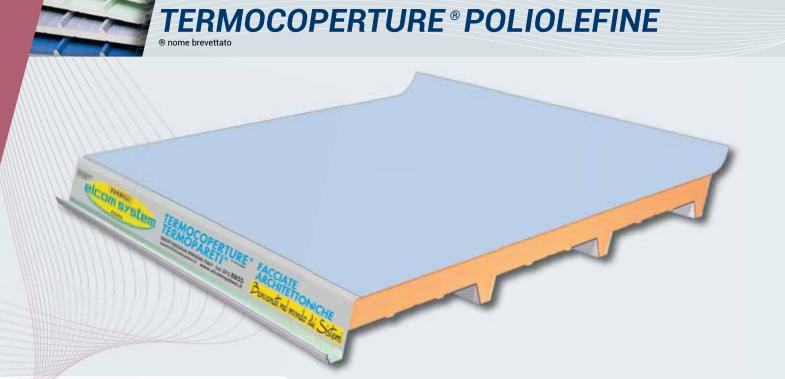
Supporto metallico esterno: è ricavato in lamiera grecata per profilatura a freddo da nastri in coils di diverso materiale: acciaio al carbonio rivestito da uno strato di zinco a caldo; alluminio; rame; acciaio inox. La finitura del supporto in acciaio e alluminio è costituita da un rivestimento organico mediante ciclo di preverniciatura a caldo standard in poliestere, oppure a richiesta, possono essere forniti rivestimenti diversi.

Supporto interno: Alluminio centesimale goffrato o Cartonfeltro bitumato Isolamento: schiuma poliuretanica PUR.(Le due greche centrali non schiumate) Le caratteristiche principali sono:

- Densità: 45 kg/m3.
- coefficiente di conducibilità termica: λ =0,022 W/m°K
- resistenza alla compressione: 140 -150 KPa
- impermeabilità: 98% di cellule chiuse (materiale anigroscopico)


Carichi ammissibili: i valori riportati nelle tabelle, assimilabili alle lamiere grecate, sono valori calcolati secondo le raccomandazioni ECCS ed AIPPEG comprovati da prove sperimentali.

TERMICO - INALTERABILE DIMINUISCE IL FENOMENO DELLA CONDENSA RIDUCE IL RUMORE DEGLI EVENTI ATMOSFERICI LEGGERO - UNIVERSALÉ


ISOLA	AMENTO TEF	RMICO
S spessore mm	Kcal m²- h -°C	J ₩ m² -°C
10	2,44	2,84

	spessore lamiera ACCIAIO	U.M.				ONDIZION			chi utili di es NZA TRA G	****				KG/m² - KN/	1		
-	mm		1,00	1,50	2,00	2,50	3,00	3,50	4,00	1	,00	1,50	2,00	2,50	3,00	3,50	4,00
	0,5	Kg/m² KN/m²	431 4,23	187 1,83	101 0,99	62 0,61	-	-	-		5 10 5,00	222 2,17	121 1,18	75 0,73	49 0,45	-	-
	0,6	Kg/m ² KN/m ²	526 5,16	229 2,25	125 1,23	76 0,75	41 0,40	-	-		6 20 6,08	270 2,64	148 1,45	91 0,89	61 0,59	42 0,41	-
	0,8	Kg/m² KN/m²	702 6,89	306 3,00	167 1,64	103 1,01	56 0,55	-	-		843 3,26	368 3,61	202 1,98	125 1,22	84 0,82	58 0,56	42 0,41

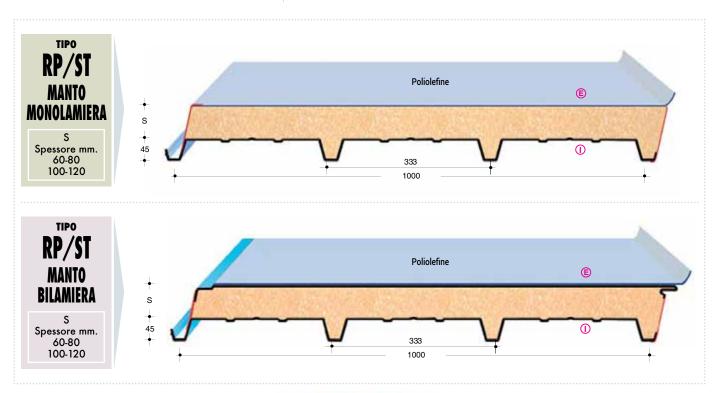
CONDIZIONI DI CARICO (SLIM AC/CB)
I valori indicati nelle tabelle prevedono una freccia f ≤ 1/200 della luce ℓ(m). La lettera ⑤ indica il lato eventualmente preverniciato.

POLIOLEFINE

Le TERMOCOPERTURE® RP/ST MANTO, nelle versioni monolamiera e bilamiera, la cui finitura esterna è costituita da un manto in poliolefine (TPO), nascono dall'esigenza di realizzare coperture piane o con bassa pendenza, offrendo numerosi vantaggi rispetto alle guaine bituminose o altri sistemi tradizionali.

Caratteristiche tecniche:

Supporti metallici esterni: il supporto metallico interno (RP/ST MANTO monolamiera) ed esterno/interno (RP/ST MAN-TO bilamiera) sono ricavati per profilatura a freddo da nastri in coils di acciaio al carbonio rivestito da uno strato di zinco a caldo, denominazione S 250GD conforme alle norme UNI EN 10346 aventi caratteristiche meccaniche non inferiori a quelle previste dal D.M. del 14/01/2008 e tolleranze secondo la norma UNI EN 10143.

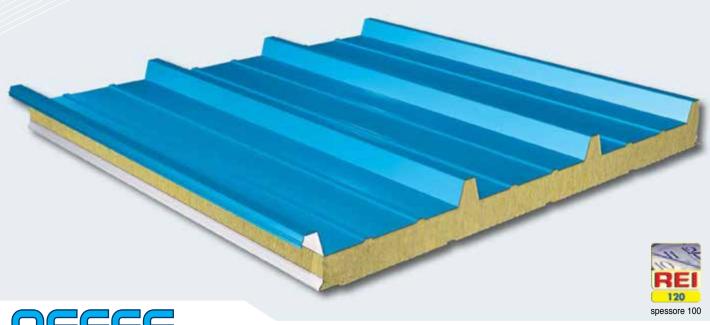

La finitura dei supporti metallici (Lato "I" e Lato "E") è costituita da un rivestimento organico mediante ciclo di preverniciatura a caldo standard in poliestere secondo norme EN 10169.

Isolamento termico: Poliuretano espanso esente da CFC, ottenuto secondo norma UNI EN 13165.

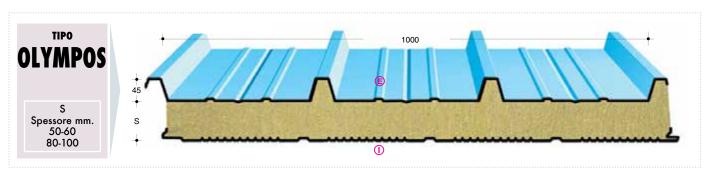
- Le caratteristiche principali della schiuma sono:
- Densità: 40 kg/m3
- Coefficiente di conducibilità termica: λ=0,022 W/m°K
- Resistenza alla compressione: 140 -150 KPa Impermeabilità: 98% di cellule chiuse (materiale anigroscopico)

Manto impermeabilizzante in Poliolefine, spessore mm 1,5

Membrana impermeabilizzante sintetica (poliolefine) ottenuta per coestrusione di una lega di poliolefine elastomerizzate a base polipropilenica (TPO/FPA), resistente ai raggi ultravioletti, omogenea, accoppiata con un non tessuto di poliestere sulla faccia inferiore. La membrana viene applicata, nel caso del pannello RP/ST MANTO bilamiera, al supporto metallico Lato "E", con un procedimento in continuo, l'utilizzo di speciali resine assicurano una perfetta adesione e monoliticità del pannello stesso. La giunzione della membrana in poliolefine tra i vari pannelli di copertura, viene effettuata in opera, semplicemente ad aria calda per termorinvenimento del materiale senza l'apporto di alcun collante o altro materiale estraneo.


1001	ANACNITO TED	MICO																
S	AMENTO TER Kcal		spessore lamiera ACCIAIO	U.M.			CONDIZ	IONI DI	CARICC		i utili di es e ZA TRA GL			т	iti in KG/r			
spessore mm	m²- h -°C	m² -°C	mm		1,00	1,50	2,00	2,50	3,00	3,50	4,00	1,00	1,50	2,00	2,50	3,00	3,50	4,00
30	0,602	0,700	0,5	Kg/m² KN/m²	407 3,99	176 1,73	95 0,93	56 0,55	-	-	-	541 5,31	236 2,31	129 1,26	80 0,78	53 0,52	36 0,35	-
40	0,461	0,536	0,6	Kg/m² KN/m²	494 4,85	215 2,11	117 1,15	71 0,70	37 0,36	-	-	660 6,47	288 2,83	158 1,55	98 0,96	65 0,64	45 0,44	-
50	0,372	0,433	0,8	Kg/m² KN/m²	672 6,59	292 2,86	160 1,57	98 0,96	54 0,53	-	-	881 8,64	385 3,78	212 2,08	131 1,28	88 0,86	62 0,61	41 0,40
60	0,313	0,364	1,0	Kg/m² KN/m²	851 8,35	371 3,64	203 1,99	125 1,23	70 0,69	39 0,38	-	1101 10,80	482 4,73	265 2,60	165 1,62	111 1,09	78 0,76	53 0,52
80	0,237	0,276																
100	0,191	0,222		NI DI CARIC cati nelle tabe						m). La lett	tera 🛈 🌀 ind	lica il lato e	ventualm	ente prev	erniciato.			
120	0,166	0,193																

		TO TERMICO					NI DI CARIC						
S spessore mm	Kcal m²- h -°C	W 	peso Kg/m²	U.M.	2,00	2,50	NZA TRA GLI A 3,00	3,50	mℓ PER SINO 4,00	GOLA CAMPA 4,50	τα <u>, , , , , , , , , , , , , , , , , , ,</u>	5,50	6,00
30	0,602	0,700	10,76	Kg/m² KN/m²	278 2,73	160 1,58	99 0,98	65 0,64	43 0,42	29 0,29	19 0,19	12 0,12	7 0,08
40	0,461	0,536	11,13	Kg/m² KN/m²	333 3,27	200 1,96	129 1,27	87 0,86	60 0,59	42 0,41	29 0,29	20 0,20	14 0,14
50	0,372	0,433	11,51	Kg/m² KN/m²	390 3,83	242 2,38	161 1,58	111 1,09	79 0,78	57 0,56	41 0,41	30 0,30	22 0,22
60	0,313	0,364	11,89	Kg/m² KN/m²	448 4,40	285 2,80	194 1,91	137 1,35	99 0,98	73 0,72	54 0,54	41 0,40	30 0,30
80	0,237	0,276	12,64	Kg/m² KN/m²	567 5,57	376 3,69	265 2,60	193 1,90	144 1,42	109 1,08	84 0,83	65 0,64	50 0,50
100	0,191	0,222	13,40	Kg/m² KN/m²	688 6,76	469 4,61	339 3,33	253 2,49	193 1,90	149 1,47	117 1,15	92 0,91	73 0,72
120	0,166	0,193	14,15	Kg/m² KN/m²	811 7,96	565 5,54	415 4,08	315 3,09	244 2,40	192 1,89	153 1,50	122 1,20	99 0,97

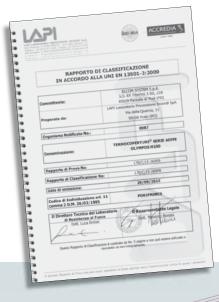

CONDIZIONI DI CARICO CON SUPPORTI IN ACCIAIO (RP/ST MANTO BILAMIERA):
I valori dei carichi riportati nelle tabelle sono indicativi; si riferiscono ad una freccia f ≤ 1/200 della luce ℓ(m) per pannelli con spessore dei supporti in **ACCIAIO** 0,5+0,5 mm. Per il dimensionamento e la verifica riferirsi all allegato E della norma UNI EN 14509 e ai valori dichiarati nella marcatura c ∈. La lettera ⊙ o indica il lato eventualmente preverniciato.

TERMOCOPERTURE ® serie REFFE OLYMPOS

PEFFE OLYMPOS

	ISOLAMENT	O TERMICO					CON	IDIZIONI DI	CARICO - C	arichi utili di es	ercizio uniforn	nemente distril	buiti in KG/m²	- KN/m²		
S	U		peso	U.M.					DIST	anza tra gi	I APPOGGI II	√ m l			Δ / Δ	
spessore mm	Kcal m²-h-°C		Kg/m²		1,50	2,00	2,50	3,00	3,50	4,00	1,50	2,00	2,50	3,00	3,50	4,00
50	0,61	0,71	15,21	Kg/m² KN/m²	1 85 1,82	1 54 1,51	127 1,25	1 02 1,00	85 0,84	70 0,69	1 67 1,64	136 1,33	106 1,04	88 0,86	57 0,56	61 0,60
60	0,52	0,61	16,21	Kg/m² KN/m²	235 2,30	1 92 1,88	158 1,55	131 1,29	105 1,03	88 0,86	215 2,11	1 73 1,70	138 1,35	116 1,14	94 0,92	82 0,80
80	0,41	0,47	18,21	Kg/m² KN/m²	296 2,90	241 2,36	211 2,07	1 74 1,71	1 43 1,40	118 1,16	276 2,71	222 2,18	182 1,78	159 1,56	133 1,30	112 1,10
100	0,33	0,39	20,21	Kg/m² KN/m²	397 3,89	333 3,26	279 2,74	229 2,25	1 92 1,88	151 1,48	378 3,71	314 3,08	254 2,49	214 2,10	204 2,00	143 1,40

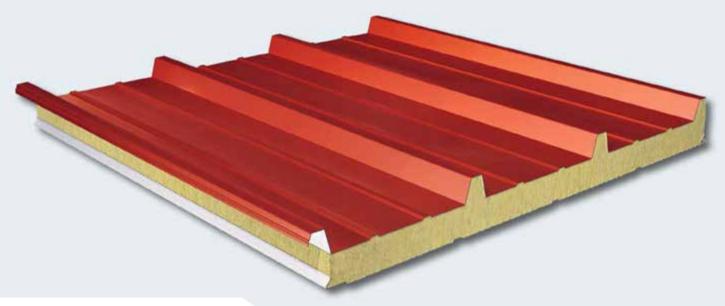
l valori indicati nelle tabelle prevedono una freccia f ≤ 1/200 della luce ℓ (m) e si riferiscono ai pannelli con spessore dei supporti in acciaio 0,5+0,6 mm. La lettera ① ⑥ indica il lato eventualmente preverniciato.

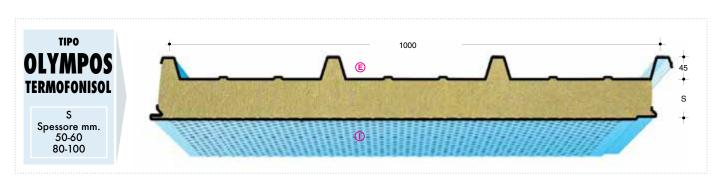

Densità media lana di roccia: 100 Kg/m³ - Valori minimi garantiit ricavati da prove effettuate dall'Università degli Studi di Perugia, Facoltà di Ingegneria, Dipartimento di Ingegneria Industriale (Centro Prove Sperimentali).

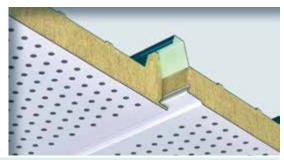
Il Prodotto. I pannelli serie AEFFE OLYMPOS sono ottenuti incollando in processo continuo due supporti metallici con un materassino di lana di roccia. Il loro uso è indispensabile quando occorre ottenere da una copertura, un elevato isolamento acustico, un buon isolamento termico, uniti ad una incombustibilità ed a una elevata resistenza al fuoco.

Materiali di supporto. Sono ricavati da nastri di lamiera generalmente in acciaio zincato a caldo S250GD conformi alla norma UNI EN 10346 e/o finitura con un rivestimento organico con caratteristiche secondo le specifiche della norma UNI EN 10169 profilati a freddo. A richiesta possono essere forniti anche materiali diversi come acciaio inosidabile conforme alla norma EN 10088-1 oppure alluminio conforme alla norma UNI EN 1396.

Isolamento. L'isolamento all'interno dei supporti è realizzato mediante un materassino in lana di roccia a fibre orientate disposte ortogonalmente al piano delle lamiere (densità 100 Kg/m^3) che conferisce una maggiore monoliticità al pannello e ne migliora le prestazioni meccaniche. Coefficiente di conduttività termica della lana di roccia: $\lambda = 0.041 \div 0.045 \text{ W/mK}$. L'utilizzo della lana di roccia a fibre orientate conferisce al pannello ottime caratteristiche di fonoassorbenza su un largo spettro di frequenza, specialmente se viene utilizzato un supporto microforato da porre dalla parte di provenienza del rumore. Questa caratteristica si evidenzia nella notevole riduzione del rumore generato dall'impatto della pioggia o della grandine sulle coperture.


Prestazioni meccaniche. I valori di portata in tabella sono stati calcolati secondo le istruzioni CNR 10022/87 ed ECCS suffragate da una serie di prove di carico uniformemente ripartito eseguite dalla Facoltà di Ingegneria dell'Università degli Studi di Perugia, Dipartimento Ingegneria Industriale (Centro Prove Sperimentali).




TERMOCOPERTURE ® serie REFFE OLYMPOS TERMOFONISOL

PEFFE OLYMPOS TERMOFONISOL

S	ISOLAMEN	TO TERMICO	noco		CONDIZIONI DI CARICO - Carichi utili di esercizio uniformemente distribuiti in KG/m² - KN/m²							
spessore	Kcal	W	peso	U.M.	DISTANZA TRA	GLI APPOGGI IN	m l					
mm	m²- h -°C	m² -°C	Kg/m²		1,50	2,00	2,50	3,00				
50	0,61	0.71	13,55	Kg/m²	116	86	-	•				
30	0,01	0,71	10,55	KN/m²	1,14	0,84						
60	0.52	0.61	14,55	Kg/m²	147	106	77	58				
	0,02	0,01	14,00	KN/m ²	1,44	1,04	0,76	0,57				
80	0.41	0.47	16,55	Kg/m²	184	133	104	76				
00	0,41	0,47	10,55	KN/m²	1,81	1,31	1,02	0,75				
100	0.00	0.00	10.55	Kg/m²	191	141	112	85				
100	0,33	0,39	18,55	KN/m²	1,87	1,38	1,10	0,83				

l valori indicati nelle tabelle prevedono una freccia f≤1/200 della luce ℓ (m) e si riferiscono ai pannelli con spessore dei supporti in acciaio 0,5+0,6 mm. La lettera ① ⑥ indica il lato eventualmente preverniciato.

Densità media lana di roccia: 100 Kg/m³ - Valori minimi garantiti ricavati da prove effettuate dall'Università degli Studi di Perugia, Facoltà di Ingegneria, Dipartimento di Ingegneria Industriale (Centro Prove Sperimentali).

FACCIATE ARCHITETTONICHE

Ardite Realizzazioni che fanno Architettura

SISTEMA PER L'EFFICIENTAMENTO E LA RIQUALIFICAZIONE ENERGETICA ED ARCHITETTONICA

Caratteristiche tecnico-prestazionali:

Supporti: ACCIAIO - S 250 GD conforme alla norma UNI EN 10346 aventi caratteristiche meccaniche non inferiori a quelle previste dal D.M. del 14/01/2008 e tolleranze secondo la norma UNI EN 10143 ALLUMINIO - UNI EN 1396, con carico di rottura minimo 150 MPa

RAME - UNI EN 1172 COR-TEN

ACCIAIO INOSSIDABILE - Secondo norma UNI EN 10088-1

Isolante: PUR Densità ~ 40 Kg/m3 Spessori: mm. 40-50-60-80-100 Modulo base: Larghezza mm. 1000

Il sistema, data la sua caratteristica di adattabilità e flessibilità, prevede la realizzazione di moduli speciali di compensazione.

SISTEMI COORDINATI PER RIVESTIMENTI MODULARI

Il concetto di rivestimento **SERBOND**® è sviluppato intorno ad una idea nata per offrire ai progettisti una elevata libertà creativa, svincolati da moduli produttivi rigidi o griglie geometriche preimpostate. L'utilizzo di questo particolare rivestimento, è prevalentemente indirizzato all'edilizia commerciale, residenziale e dei servizi; si modella su qualsiasi progetto sia per nuove costruzioni che per ristrutturazioni. Le varie tipologie di accessori lo rendono compatibile con qualsiasi tipo di struttura:

cemento armato, muratura tradizionale, acciaio, legno; la posa in opera, supportata da una nostra assistenza tecnica in fase progettuale, è facile, rapida e non richiede speciali mezzi di cantiere.

Il sistema è particolarmente versatile: prevede l'utilizzo di pannelli FLAT (lisci), BUBBLE e RUGBY (con impronte sferiche o ellittiche su tutta la superficie del lato esterno, ricavate per stampaggio) e dei nuovi pannelli CAOS, oltre ad una ricca e flessibile componentistica di elementi speciali, permettendo una vasta scelta di moduli e colori che esaltano l'elevato standard architettonico. SERBOND® è costituito da una sottostruttura leggera in acciaio zincato, ancorata alle strutture portanti dell'edificio. I moduli sandwich, monolitici, a planarità stabilizzata, sono provvisti di giunto a taglio termico, con fissaggio a scomparsa e predisposti per l'inserimento di speciali profili in alluminio estruso; il modulo geometrico può avere uno sviluppo sia verticale che orizzontale. Completano il sistema una serie di elementi di finitura a taglio termico quali angoli curvi, angoli retti, spigoli ed ottavi di sfera, soglie, stipiti ed architravi per infissi, oltre a moduli speciali sottomultipli e raccordi realizzati a disegno.

DESCRIZIONE CAPITOLATO

La facciata architettonica SERBOND® è costituita da una sottostruttura leggera in acciaio zincato, ancorata alle strutture portanti dell'edificio. I moduli sandwich, monolitici, a planarità stabilizzata, sono provvisti di giunto a taglio termico, con fissaggio a scomparsa e predisposti per l'inserimento di speciali profili in alluminio estruso; il modulo geometrico può avere uno sviluppo sia verticale che orizzontale. Completano il sistema una serie di elementi di finitura a taglio termico quali angoli curvi, retti, spigoli ed ottavi di sfera, soglie, stipiti ed architravi per infissi, oltre a moduli speciali sottomultipli e raccordi realizzati a disegno. Il sistema SERBOND® si compone di:

- Sottostruttura
- Pannelli ciechi a taglio termico
- Profilo in alluminio estruso
- Elementi di finitura a taglio termico

SOTTOSTRUTTURA

Profili tubolari in acc. Zinc....x...spess. mm. aventi funzione di sottostruttura, predisposti in senso verticale ed ancorati alla struttura portante mediante idoneo sistema di fissaggio.

diante idoneo sistema di fissaggio. PANNELLI A TAGLIO TERMICO CON FISSAGGIO A SCOMPARSA TIPO TERMOPARETI® "WP/ST FLAT" o "WPM/C-FN FLAT"

- Supporti esterni in **lamiera di acciaio zincato / alluminio / acciaio inossidabile / corten**, sagomati a freddo su treni di profilatura a rulli.
- La finitura dei supporti in acciaio zincato e allu-

minio è costituita da un rivestimento organico mediante ciclo di preverniciatura a caldo standard in poliestere secondo norme EN 10169.

- Profilo in PVC, applicato ad incastro sul lato longitudinale femmina dei pannelli tra i due supporti esterni, per dare maggiore stabilità al fissaggio e evitare distacchi delle lamiere dall'isolamento, sia durante la manipolazione che in fase di montaggio. - Isolamento in poliuretano espanso esente da CFC, ottenuto secondo norma UNI EN 13165.

CARATTERISTICHE DEL PANNELLO

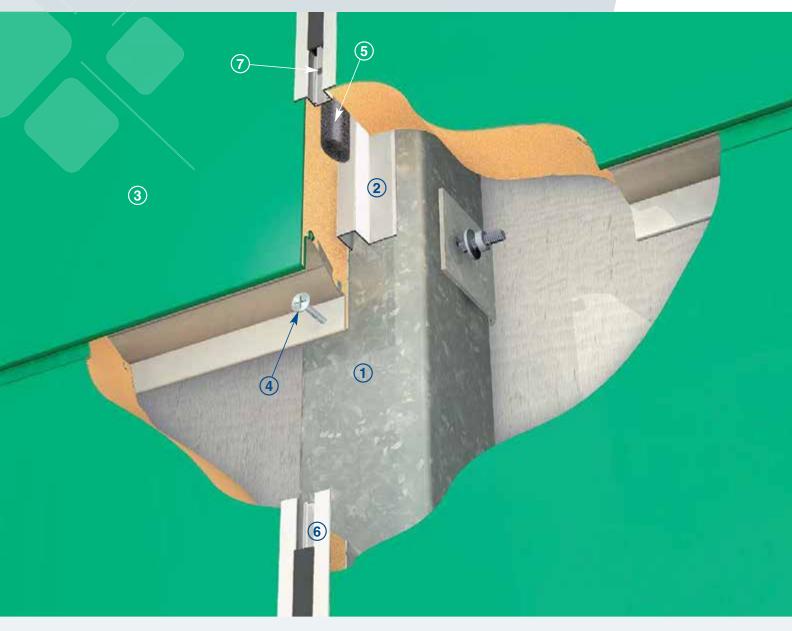
- Spessore del pannello: mm. 40-50-60-80-100
- Spessore supporti esterni: mm. 0,6 lato (E) + 0,5 lato (I)
- Preverniciatura supporti esterni: ns. standard lato (E)
- + ES73 Bianco Grigio lato (I)
- Interasse del pannello: mm. 1000
- Densità dell'isolamento: Kg/m3 40 ca.
- Fissaggio a scomparsa sul giunto femmina

PROFILO IN ALLUMINIO ESTRUSO

Profili speciali in alluminio estruso, saranno utilizzati quali elementi architettonici e di giunzione con gli altri componenti costruttivi.

ELEMENTI DI FINITURA A TAGLIO TERMICO

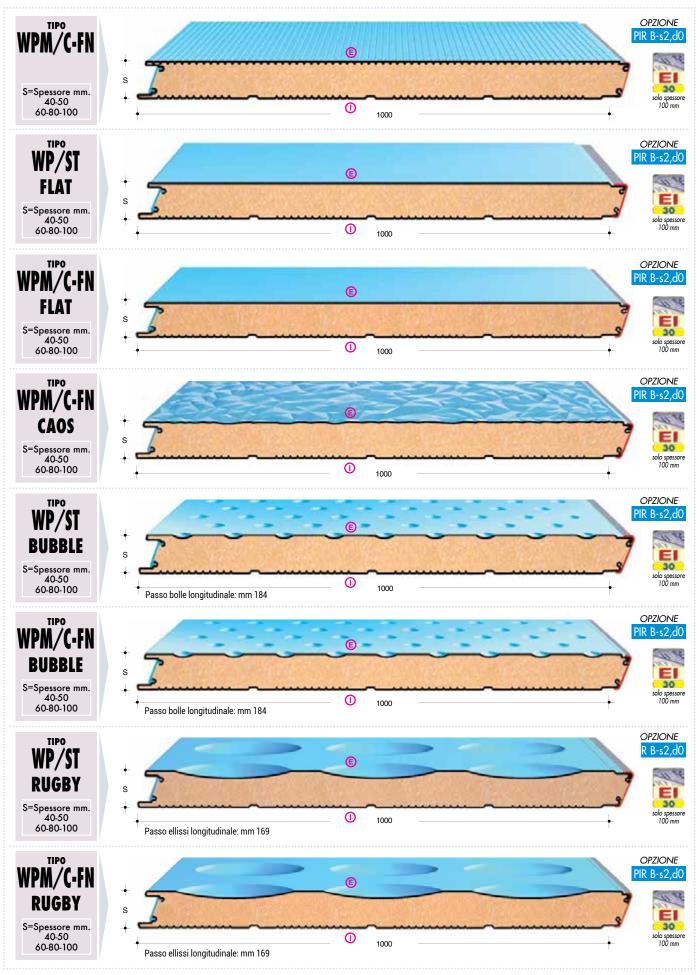
Elementi speciali a taglio termico aventi funzione di chiusura del pannello e di raccordo con gli altri elementi costruttivi.

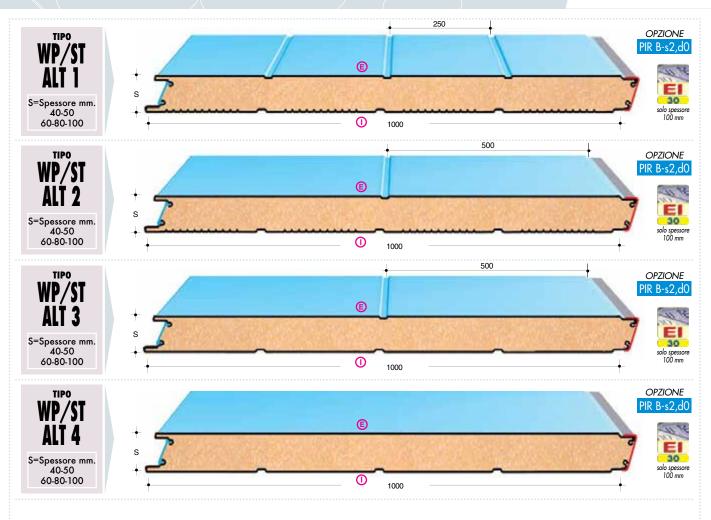

SISTEMA DI POSA IN OPERA

Eseguita mediante ancoraggio della sottostruttura in tubolare.....x..., alla struttura portante dell'edificio e successivo fissaggio meccanico dei pannelli e degli elementi di finitura a taglio termico.

COMPOSIZIONE DEL SISTEMA SERBOND®

- 1 SOTTOSTRUTTURA IN ACCIAIO ZINCATO
- 2 PRESSOPIEGATO DI ANCORAGGIO PER TRAFILATO IN ALLUMINIO
- (3) TERMOPARETI® A FISSAGGIO NASCOSTO
- 4 VITE TESTA SVASATA PIANA LARGA PER FISSAGGIO TERMOPARETI®


- (5) GUARNIZIONE DI TENUTA "LEM CORD" DIAMETRO 20 mm
- 6 TRAFILATO IN ALLUMINIO PREVERNICIATO VARI COLORI COMPLETO DI GUARNIZIONE IN EPDM NERA
- 7 VITE "DRILLEX" PER FISSAGGIO TRAFILATO IN ALLUMINIO



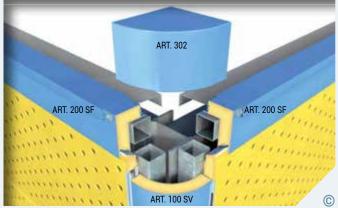
TERMOPARETI® DEL SISTEMA SERBOND®

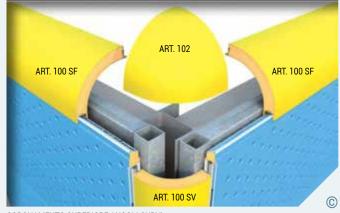
	ISOLAMENTO TERMICO S U peso					С	ONDIZIONI DI	CARICO - Ca	arichi utili di ese	rcizio uniformer	mente distribuit	i in KG/m² - KN/n	n²	
S	Kcal L	J _W	peso	U.M.				DIS	TANZA TRA GL	I APPOGGI IN	mℓ	△ <i>t</i> △ <i>t</i> △ <i>t</i> △		
spessore mm	m²- h -°C	m² -°C	Kg/m²		2,00	2,50	3,00	3,50	4,00	2,00	2,50	3,00	3,50	4,00
40	0.461	0,536	10,15	Kg/m²	166	125	90	70	55	178	140	108	85	70
40	0,401	0,500	10,13	KN/m ²	1,63	1,22	0,88	0,68	0,54	1,74	1,37	1,05	0,83	0,68
50	0.372	0.433	10,53	Kg/m²	225	160	120	90	70	245	182	140	115	90
30	0,072	0,400	10,55	KN/m ²	2,21	1,57	1,18	0,88	0,68	2,41	1,78	1,37	1,13	0,88
60	0.313	0,364	10,91	Kg/m² KN/m²	289	216	142	115	85	321	237	181	141	115
00	0,515	0,304	10,91	KIN/ITI-	2,83	2,12	1,39	1,13	0,83	3,15	2,32	1,77	1,38	1,13
80	0,237	0,276	11.67	Kg/m² KN/m²	455	316	227	160	120	500	365	280	215	145
00	0,237	0,270	11,07	KIN/ITI-	4.46	3,09	2,22	1,57	1,18	4,91	3,58	2,74	2,11	1,42
100	0,191	0,222	12,63	Kg/m²	470	345	260	200	160	510	390	285	225	180
	0,101	0,222	12,00	KN/m²	4,60	3,38	2,55	1,96	1,57	4,99	3,82	2,79	2,20	1,76

CONDIZIONI DI CARICO CON SUPPORTI IN ACCIAIO
I valori dei carichi riportati nelle tabelle sono indicativi; si riferiscono ad una freccia f≤ 1/200 della luce ℓ (m) per pannelli con spessore dei supporti in ACCIAIO 0,5+0,5 mm.
Per il dimensionamento e la verifica riferirsi all'allegato E della norma UNI EN 14509 e ai valori dichiarati nella marcatura C €. La lettera ① ③ indica il lato eventualmente preverniciato.

•	ISOLAMENTO TERMICO					С	ONDIZIONI DI	CARICO - Ca	arichi utili di ese	rcizio uniformer	nente distribui	i in KG/m² - KN/m	2	
S	Kcal L	ر س	peso	U.M.				DIS	TANZA TRA GL	I APPOGGI IN	m ℓ			
spessore mm	m²- h -°C	m² -°C	Kg/m²		2,00	2,50	3,00	3,50	4,00	2,00	2,50	3,00	3,50	4,00
40	0,461	0,536	5,16	Kg/m² KN/m²	108 1,06	64 0,62	41 0,40	27 0,26	19 0,18	149 1,46	95 0,93	64 0,63	44 0,43	32 0,31
50	0,372	0,433	5,56	Kg/m ² KN/m ²	150 1,47	92 0,90	60 0,58	41 0,40	29 0,28	194 1,90	129 1,26	89 0,87	63 0,61	46 0,45
60	0,313	0,364	5,96	Kg/m ² KN/m ²	191 1,87	121 1,18	81 0,79	56 0,55	40 0,39	237 2,32	162 1,59	114 1,11	83 0,81	62 0,61
80	0,237	0,276	6,76	Kg/m² KN/m²	272 2,67	180 1,76	125 1,22	89 0,87	65 0,63	317 3,11	225 2,20	165 1,62	124 1,21	95 0,93
100	0,191	0,222	7,56	Kg/m² KN/m²	290 2,84	235 2,30	180 1,76	110 1,08	90 0,88	310 2,94	255 2,49	190 1,86	135 1,32	100 0,98

CONDIZIONI DI CARICO CON SUPPORTI IN ALLUMINIO
I valori dei carichi riportati nelle tabelle sono indicativi; si riferiscono ad una freccia f≤1/200 della luce ℓ(m) per pannelli con spessore dei supporti in ALLUMINIO 0,6+0,6 mm.
Per il dimensionamento e la verifica riferirsi all'allegato E della norma UNI EN 14509 e ai valori dichiarati nella marcatura C €. La lettera ① ② indica il lato eventualmente preverniciato.



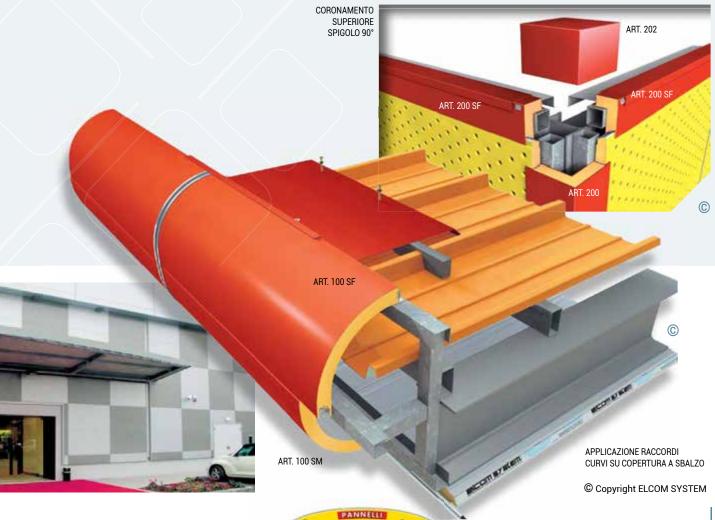


PARTICOLARE GIUNTO TERMOPARETI®

 ${\tt ANGOLI~CURVI~VERTICALI~/~ANGOLI~RETTI~ORIZZONTALI~CORONAMENTO~SUPERIORE}$

CORONAMENTO SUPERIORE ANGOLI CURVI

ANGOLO CURVO VERTICALE



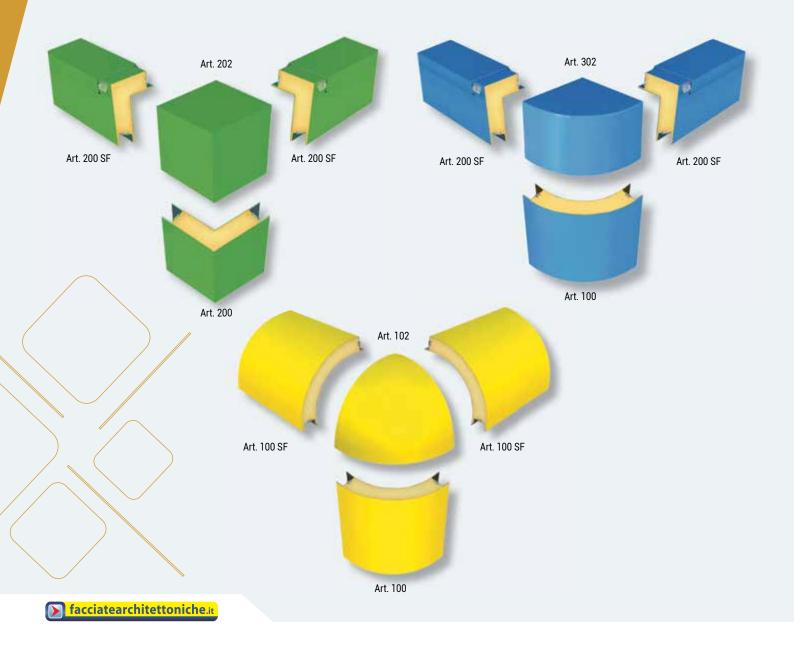
CORONAMENTO SUPERIORE ANGOLO 90°

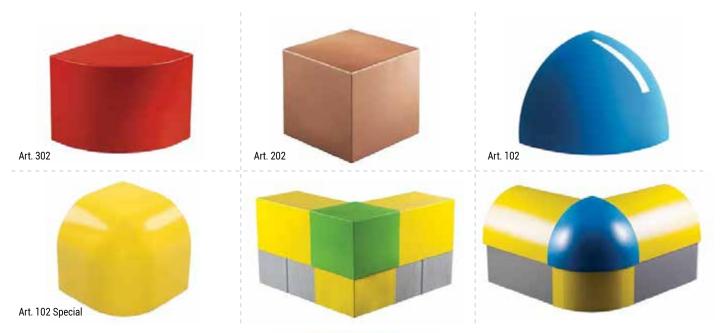
CORONAMENTO ANGOLO INFERIORE CURVO

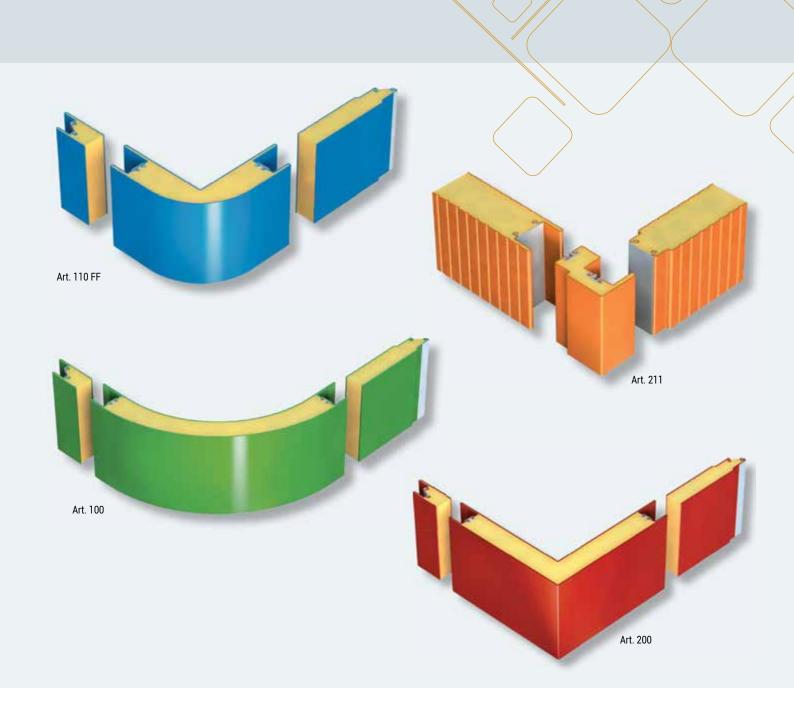
RIQUALIFICAZIONE ENERGETICA E ARCHITETTONICA

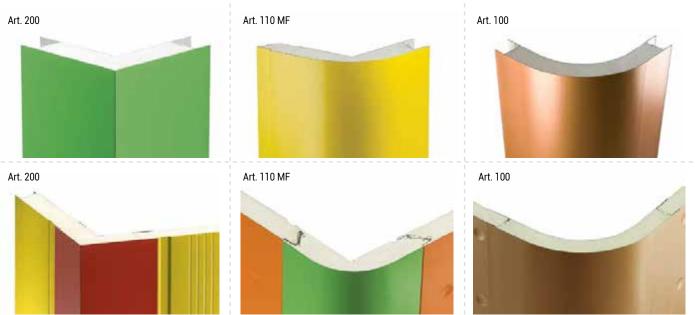
REALIZZAZIONI

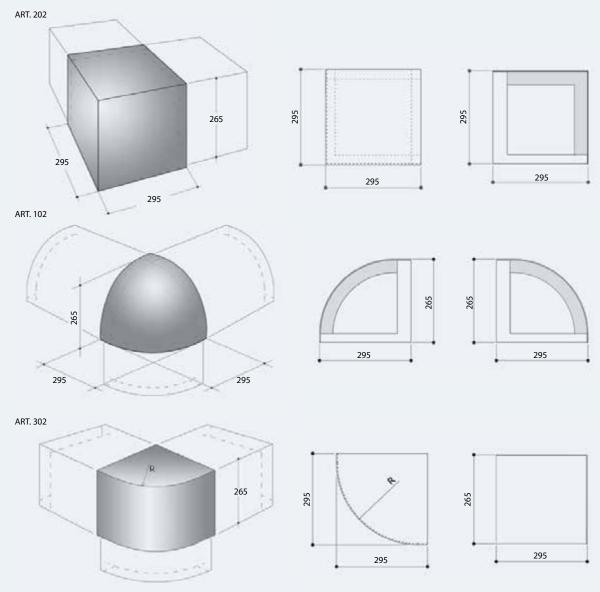
EFFICIENTAMENTO ENERGETICO E ARCHITETTONICO

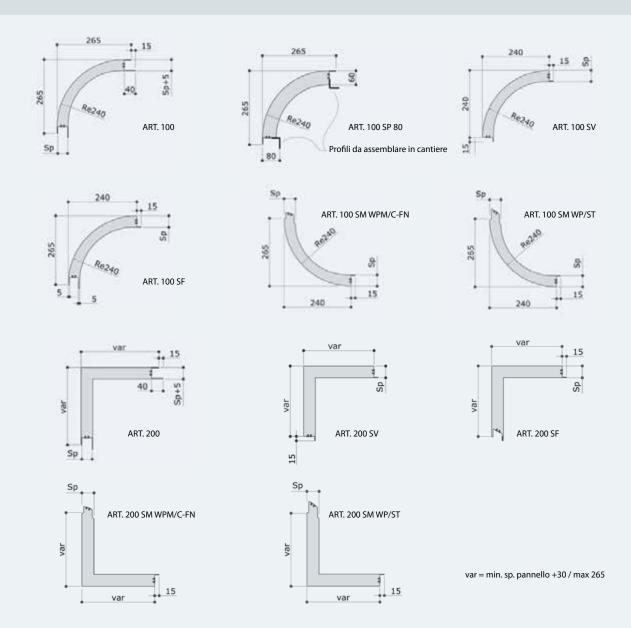



REALIZZAZIONI



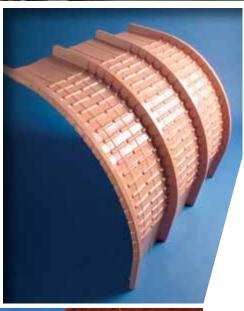

Sistemi per facciate architettoniche Componenti speciali a taglio termico

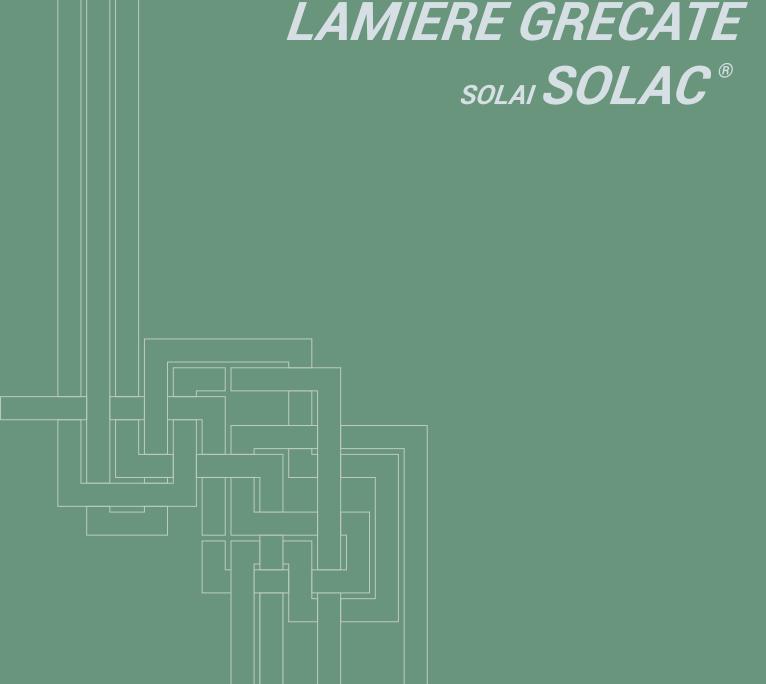


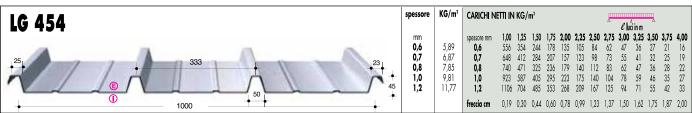


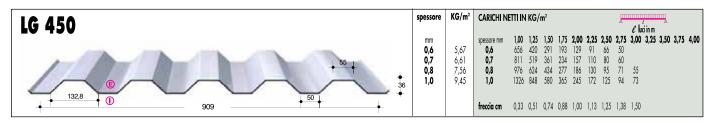
Sistemi per facciate architettoniche Componenti speciali a taglio termico

Sezione prodotto









Le Lamiere grecate della elcom system s.p.a. (Azienda certificata uni en iso 9001) sono state studiate per realizzare coperture e pareti. La possibilità di lavorazioni particolari quali la centinatura e lo stampaggio permettono l'utilizzo su ogni tipo di costruzione.

Caratteristiche tecniche

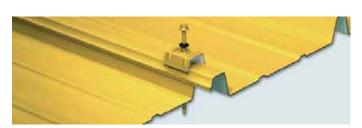
Materiali impiegati. Le lamiere grecate sono ricavate per profilatura mediante deformazione a freddo dei seguenti materiali:

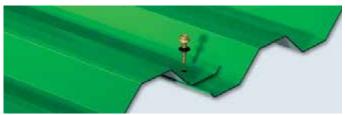
- Acciaio al carbonio rivestito da uno strato di zinco applicato in continuo per immersione a caldo conforme alle norme UNI EN 10346 con caratteristiche meccaniche non inferiori a quelle degli acciai previste dal D.M. del 14/01/2008;
- Acciaio inossidabile le cui caratteristiche sono definite dalle norme EN 10088-1;
- Alluminio con carico di rottura minimo di 150 MPa, norme UNI EN 1396;
- Rame con caratteristiche meccaniche e stato fisico definito dalla norma UNI EN 1172.

Finitura. I materiali descritti, ad eccezione del rame, possono essere forniti con un rivestimento organico mediante un ciclo di preverniciatura a caldo applicato in continuo (coil coating) prima della profilatura, avente caratteristiche secondo le specifiche delle norme UNI EN 10169. Ai nastri di supporto, dopo sgrassaggio e pretrattamento delle superfici, a seconda della loro natura, viene applicato a rullo una mano di fondo il cui

spessore è di 5 microns; dopo la relativa cottura a 220/250°C circa, viene applicata una mano a finire. Il tipo di rivestimento Standard è in poliestere il cui spessore è 25 microns. A richiesta possono essere forniti rivestimenti diversi. Le lamiere grecate ottenute da coils preverniciati resistono maggiormente agli agenti atmosferici e presentano un elevato grado di finitura nelle varie tinte. Le garanzie sulla preverniciatura sono in funzione delle resine applicate, delle condizioni di esposizione e dell'uso dei manufatti.

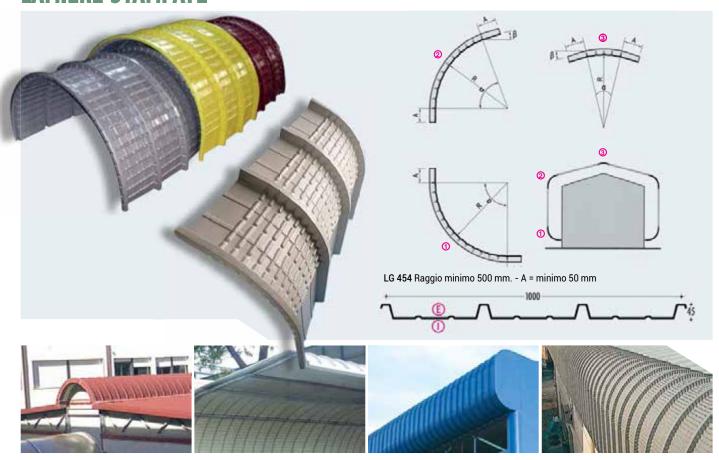
Tolleranze. Le tolleranze massime dimensionali e di forma non superano i valori contemplati dalle norme UNI EN 508-1-2-3.

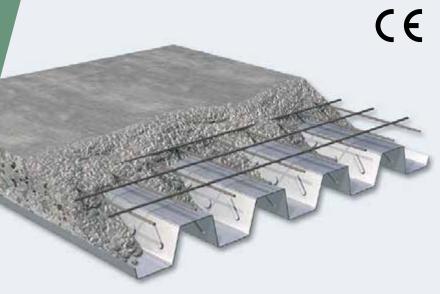

Definizione delle caratteristiche statiche e carichi di esercizio. Condizioni poste:

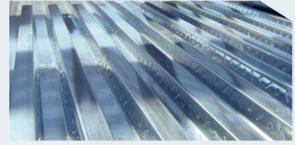

- Oamm = 165 N/mm2 (Fe S250GD UNI EN 10326)
- carico "P" uniformemente distribuito
- " ℓ " luce tra gli appoggi
- 4 Freccia f ≤ 1/200 " ℓ

Modulo di elasticità dell'acciaio E = 210000 N/mm²

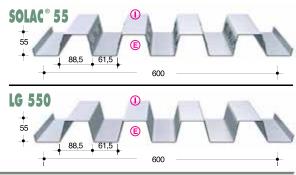
Descrizione del metodo adottato per definire parametri statici.


Si fa riferimento alle norme CNR 10022-84 relative alle istruzioni per la costruzione di profilati a freddo e alle raccomandazioni AIPPEG (Associazione Italiana Produttori Pannelli ed Elementi Grecati).


LAMIERE STAMPATE



LAMIERE CENTINATE


Spessore	S mm	0,6	0,7	0,8	1,0	1,2
Peso	P kg/m²	7,85	9,16	10,47	13,08	15,70
Modulo di resistenza	W cm ³ /m	11,69	14,46	17,40	23,69	30,38
	Wr cm ³ /m	13,71	16,97	20,44	26,66	33,35
Momento d'inerzia	J cm⁴/m	40,95	49,85	59,07	78,15	97,52

CARICHI NETTI	IN KG	/m²											
spessore mm	1,00 1302	1,25 830	1, 50 574	1, 75 420	2,00 319	2,25 251	2,50 202	2,75	Juci in 3,00		3,50	3,75	4,00
0,7	1610 1938	1027	711 855	520 626	396 477	311	248 294	184	140	108 128	85 101	67 80	54 64
0,6 0,7 0,8 1,0 1,2	2640	1685	1166	853 1095	650	511	390 488	290 362	220	170	134	106 133	85 107
freccia cm	0.00/	0.32			0.82				1,50		1,75	1,87	2,00
rreccia cm	0,20	0,32	0,40	0,03	0,02	1,04	1,23	1,3/	1,50	1,02	1,/3	1,0/	2,00

SOLAC® 55 - LG 550

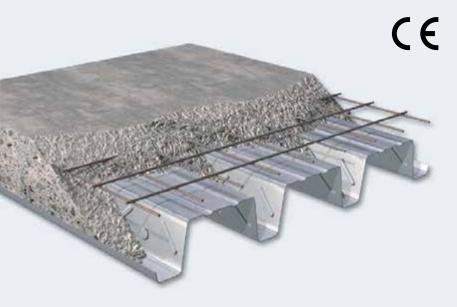
2	SOLETTA - 3,5 cm. HT = 9 cm.												
9 H	X on	on'/m	W cm²/m	Me kg cm/m									
0,6	5,81	227	39,04	54649									
0,7	5,66	253	44,67	62536									
0,8	5,52	277	50,16	70223									
1,0	5,29	321	60,78	85098									
1,2	5,10	362	71,02	99429									

Carichi netti	in KG/m ¹																
condizioni	about.		2222								ℓ luci in	m					
di corico	cm	spessore mm	Kg/m ¹	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00			
	127 3	0,6	162	1781	1266	931	. 702	538	416	324	252	195	149	111			
	3,5 cm. Hr = 9 cm.	0,7	163	2060	1470	1088	825	637	498	393	310	245	193	150			
		0,8	164	2332	1670	1240	945	734	578	460	367	294	235	184			
Δ ι Δ		3,5	3,5	5 S	S ≈ ±	1,0	167	2859	2056	1535	1178	922	733	590	478	389	317
	202	1,2	169	3246	2428	1819	1402	1103	882	714	584	480	384	238 287			
	1	freccia cm			0,39	0,50	0,64	0,79	0,95	1,13	1,33	1,54	1,77	2,00			

2	50LETTA - 4,5 cm. HT = 10 cm.												
8.0	X cm	cm*/m	W cm³/m	Me kg cm/m									
0,6	6,50	300	46,11	64553									
0,7	6,32	334	52,77	73875									
0,8	6,16	365	59,25	82952									
1,0	5,90	423	71,76	100470									
1,2	5,68	476	83,76	117261									

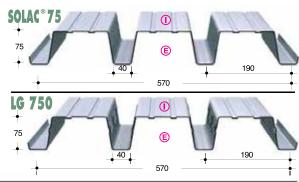
Carichi netti	in KG/m ^a															
	abana.		22220								ℓ luci in	m				
di carico	cm	spessore mm	peso Kg/m²	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00		
		0,6	187	2108	1499	1104	833	639	496	387	302	235	180	136		
	4,5 cm.	# 80 L	0,7	188	2438	1742	1289	979	757	593	468	371	294	232	181	
		0,8	189	2760	1977	1470	1121	872	688	548	439	352	282	225		
△ <i>ℓ</i> △		0 -	0 -	0 -	1,0	192	3328	2433	1818	1396	1094	871	.701	569	464	380
	on E	1,2	194	3458	2869	2151	1659	1307	1046	848	694	571	473	181 225 310 392		
	freccia cm			0,25	0,34	0,45	0,57	0,70	0.85	1,01	1,19	1,38	1,58	1,80		

Caratt	eristic	he geo	metrich	e e statiche	Carichi netti	in KG/m³			_										
					200000000000000000000000000000000000000	1200000										ℓ luci in	m		
8	SOLETTA - 5,5 cm. HT = 11 cm.		condizioni di carico	altezza cm	spessore	peso Kg/m ¹	1,50	1,75	2.00	2.25	2.50	2.75	3.00	3,25	3,50	3.75	4.00		
an ma	cm	cm*/m	w on'/m	Me kg cm/m	G Carlo	Sin	mm	edim	1,50	ALI PARTE		707	2,30		-,	5,25	4,55	-	1,00
0,6	7.21	387	53.63	75085		. 1	0,6	212	2458	1749	1290	975	749	582	455	357	278	215	163
0,7	7.01	430	61.41	85971		# 5 E	0,7	213	2844	2033	1506	1145	887	696	551	438	348	276	217
0,8	6.83	471	68.98	96574	Δ ι Δ		0,8	214	3219 3605	2308 2840	1717	1312	1022	807 1021	644 823	517	416 547	335	268 368
1,0	6,53	546	83,60	117040		80 #	1,0	217	3730	3166	2124	1633	1281	1226	995	670	673	558	464
1,2	6,28	613	97,61	136651			freccia cm	110000	0.23	0.31	0,41	0.51	0,64	0.77	0.92	1,07	1,25	1,43	1,63


SOLAI - L'utilizzo delle lamiere grecate in acciaio nella costruzione dei solai ha consentito una innovazione di notevole importanza; l'elasticità del sistema permette una facilità d impiego in qualsiasi tipo di condizione. Le particolari impronte sui lati delle greche, permettono l'ancoraggio del getto in calcestruzzo impedendone lo scorrimento longitudinale o il distacco verticale.

Norme tecniche di riferimento per lamiere grecate e solai collaboranti - D.M. 09/01/96 - CNR 10022-84

- CNR UNI 10011-88 - EUROCODICE 3
- CNR 10016-72 PARTE 1.3

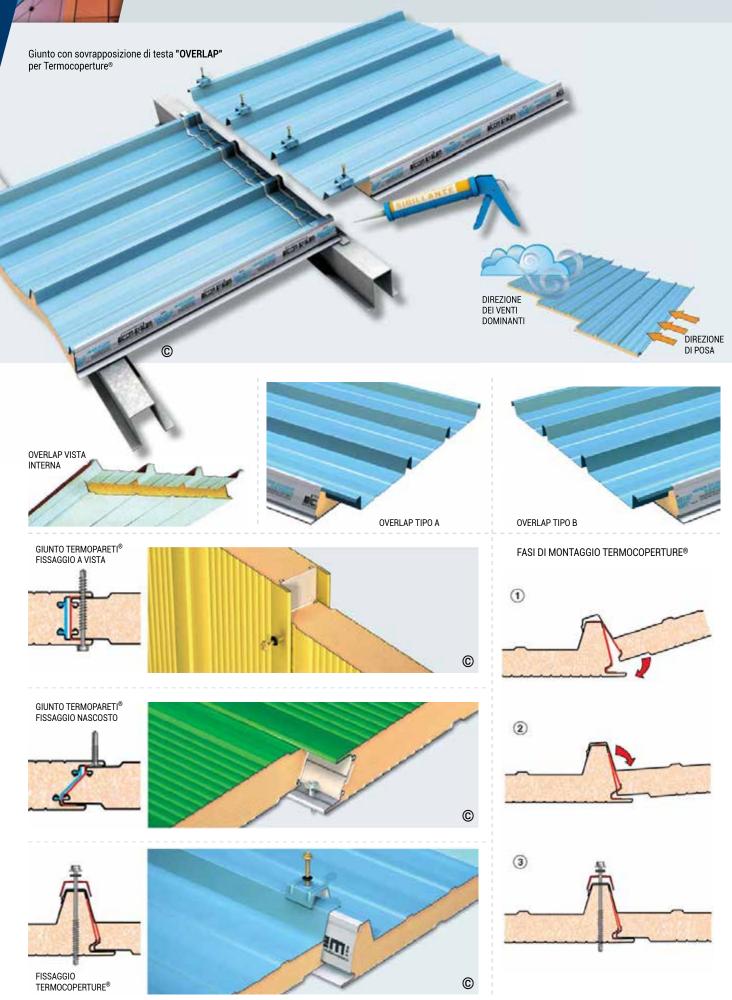

Spessore	S	mm	0,6	0,7	0,8	1,0	1,2
Peso	P	kg/m^2	8,26	9,64	11,02	13,77	16,53
Modulo di resistenza	W	cm ³ /m	19,52	23,07	26,65	33,87	40,37
	Wr	cm³/m	18,77	22,80	26,93	34,62	41,47
Momento d'inerzia	J	cm4/m	82.13	99,84	117,99	152,16	184,49

CARICHI N	IETTI IN KG	/m²				A								
						luci in								
spessore mm	1,00	1,25	1,50	1,75	2,00	2,25	2,50	2,75	3,00	3,25	3,50	3,75	4,00	
0,6	2178	1391	963	706	538	424	341	281	235	185	146	117	95	
0,7	2574	1644	1139	834	636	501	404	332	277	225	178	143	116	
0,8	2974	1899	1316	964	735	579	467	384	321	266	211	169	138	
1,0	3779	2414	1672	1225	934	735	593	488	408	344	272	219	178	
1,2	4505	2877	1993	1460	1114	877	707	581	486	412	330	266	216	
freccia cm	0.16	0.25	0.35	0.48	0.63	0.79	0.98	1 19	1.41	1.63	1.75	1.88	2 00	

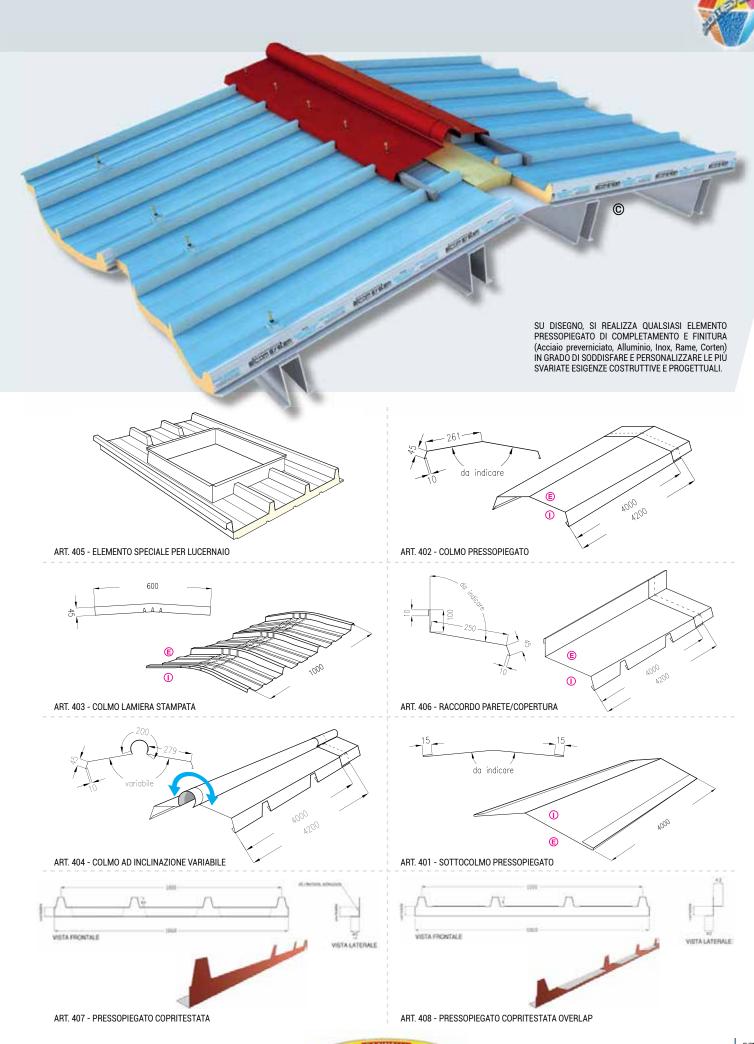
SOLAC®75 - LG 750

Caratt	eristiche geometriche e statiche	Corichi netti in KG/m²														
		condizioni di carico	A	spessore mm	peso Kg/m³		1,75	2,00	2,25				ℓ luci in	m		
3	SOLETTA + 4,5 cm, HT = 12 cm.		oltezza cm			1,50				2,50	2,75	3,00	3.25	3,50	3,75	4,00
spetso mm	X J W Me on on'/n on'/n kg.cn/m															
0,6	8,41 359 42,66 59728		- 8	0,6	170	1953	1390	1024	774	594	452	361	282	220	170	128
0,7	8,23 401 48,77 68284		ETTA Gar. 12 cm	0,7	171	2256	1612	1194	908	703	551	435	345	274	217	170
0.8	8,07 442 54,73 76616	A / A	30	0,8	173	2551	1829	1360	1038	806	638	508	408	328	263	210
-		,	S 4 =	1,0	175	3121	2246	1679	1290	1011	805	649	527	430	352	288
1,0	7,80 516 66,22 92712		T. T	1,2	178	3668	2648	1986	1531	1027	966	784	641	528	437	363
1,2	7,58 585 77,27 108173			freccia cm	1 277	0,19	0,26	0,34	0,44	0,54	0,65	0,77	0,91	1,05	1,21	1,38

Caratteristiche geometriche e statiche					Carichi netti	Carichi netti in KG/m ³														
					2222	1742717012		0.00						ℓ luci in m						
2	SOLETTA - 5,5 cm. HT = 13 cm.			ff = 13 cm.	condizioni di carico	altezza cm	spessore	Ka/m²	1,50	1,75	2.00	2.25	2.50	2.75	3.00	3.25	3.50	3.75	4,00	
S E	X cm	cm²/n	W cm²/m	Me kg cm/m	u cano			(19×111	1,000	1,11.2	2,00	207	2124	35.5	V,44	0,113	0,50	40.5	2704000	
0,6	9.11	450	49.40	69161	1	4 É	0,6	195	2264	1611	1188	898	690	536	420	329	256	198	151	
0,7	8.91		56.47	79051		E E C	0,7	196	2614	1869	1385	1053	815	640	506	402	320	253	199	
method so have	1.00					300	0,8	198	2955	2119	1576	1203	937	740	590	474	381	307	246	
0,8	8,73	553	63,34	88672	Δ ι Δ	80.	1.0	200	3565	2600	1944	1494	1172	934	753	612	500	410	336	
1,0	8,42	645	76,58	107219		v =	1,2	203	3826	3062	2297	1772	1397	1119	908	744	613	508	422	
1,2	8,17	729	89,27	124984			freccio em		0,18	0,24	0,32	0,40	0,50	0,60	0,72	0,84	0,97	1,12	1,27	


Caratteristiche geometriche e statiche				e e statiche	Carichi netti	Carichi netti in KG/m¹														
					222244224			200.00						ℓ luci in m						
2	SOLETTA -6,5 cm. HT = 14 cm.			ff = 14 cm.	condizioni di carico	altezza cm	spessore	Kg/m ³	1.50	1.75	2.00	2.25	2,50	2.75	3,00	3.25	3,50	3.75	4,00	
Spens	cm	cm*/m	w cm²/m	Me kg cm/m	ai taino	500		rigeriii	1150	1,10	2,00	2/22	4,54	2,7.5	0,00	0,43	0,50	-41.5	10000	
0,6	9.83	556	56.61	79249		ETTA GM.	0,6	220	2598	1850	1365	1032	794	618	484	380	297	231	176	
0,7	9,60	622	64.72	90604			0,7	221	3000	2145	1591	1210	938	737	584	465	370	294	232	
motivay, in	-		-	and the beautiful that the second		902	0,8	223	3391	2432	1810	1383	1078	852	681	547	441	355	285	
0,8	9,40	683	72,60	101645	Δ ι Δ	80.	1,0	225	3775	2985	2233	1717	1348	1075	867	706	577	474	389	
1,0	9,07	795	87,80	122915		v ±	1,2	228	4034	3425	2637	2036	1606	1288	1046	857	708	587	488	
1,2	8,79	899	102,33	143264			freccia cm	1.00	0,17	0,23	0,29	0,37	0,46	0,56	0,66	0,78	0,90	1,04	1,18	

NOTA - Per operare su grandi luci, sia in copertura che in parete, vengono prodotte lamiere grecate derivate dal SOLAC 75 e SOLAC 55 che, prive delle impronte laterali, vengono chiamate LG 750 e LG 550.



ACCESSORI COMPLEMENTARI - FINITURE

ACCESSORI COMPLEMENTARI - FINITURE

ACCESSORI PER IL FISSAGGIO

CAPPELLOTTI

Cappellotti per fissaggio delle Termocoperture® disponibili in acciaio preverniciato, inox, rame, cor-ten, alluminio preverniciato, aluzinc

VITE AUTOFILETTANTE TESTA ESAGONALE

Vite autofilettante per fissaggio delle Termocoperture® o Termopareti® non a fissaggio nascosto su struttura in acciaio

RONDELLE IN PVC

Rondella in Pvc necessaria nel gruppo di fissaggio delle Termocoperture®

VITI DRILLEX

Vite specifica per il fissaggio del trafilato in alluminio del sistema Serbond®

VITE AUTOPERFORANTE TESTA ESAGONALE

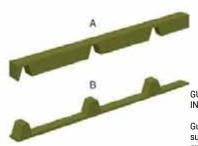
Vite autoperforante per fissaggio delle Termocoperture® o Termopareti® non a fissaggio nascosto su struttura in acciaio

GRUPPO COMPLETO DI FISSAGGIO

Gruppo di fissaggio delle Termocoperture® comprensivo di vite, rondella e cappellotto Vite specifica

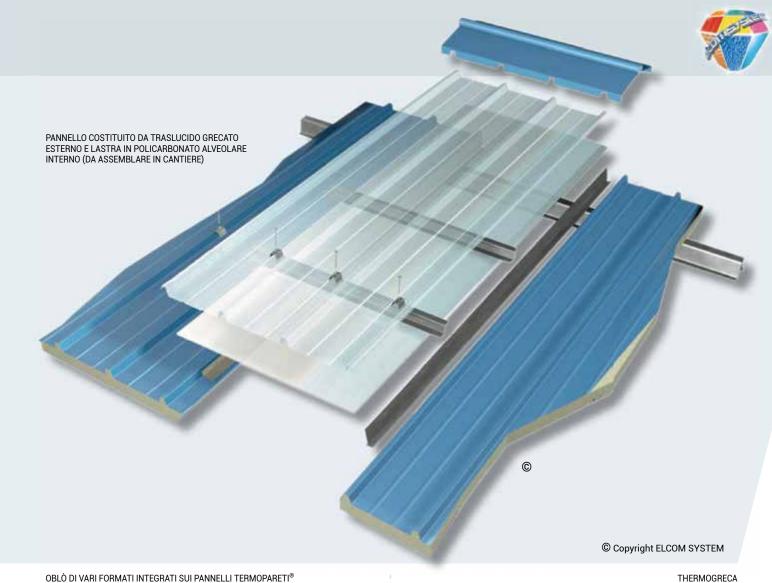
VITE TESTA SVASATA PIANA LARGA

Vite specifica per il fissaggio nascosto delle Termopareti®


RIVETTI VARI

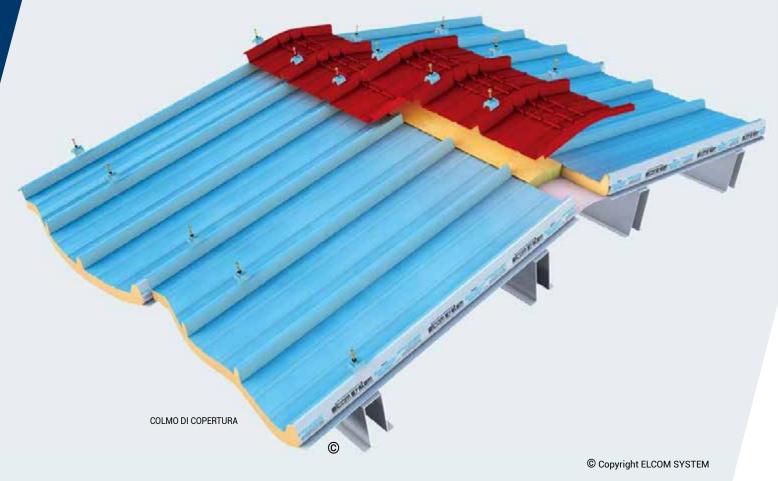
Rivetti di vari colori per fissaggio lattonerie

VITE PER LEGNO

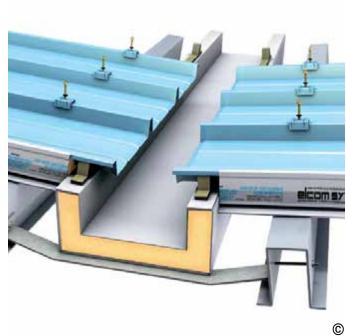

Vite per fissaggio delle Termocoperture® o Termopareti® non a fissaggio nascosto su struttura in legno

GUARNIZIONE SAGOMATA IN RESINA ACRILICA TIPO A e B

Guarnizione sottocolmo di tenuta supplementare da installare in prossimita del colmo

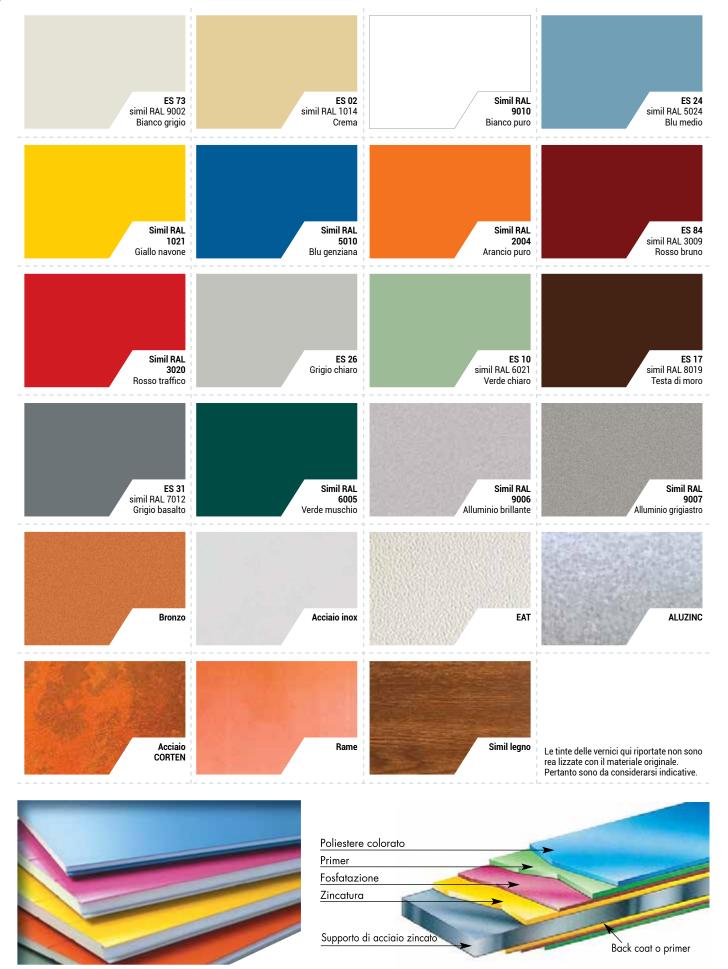


ACCESSORI COMPLEMENTARI - FINITURE



RACCORDO ALLA GRONDA COIBENTATA (PARETE E COPERTURA)

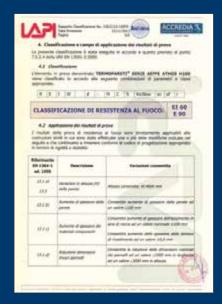
PARTICOLARE DI COMPLUVIO COIBENTATO

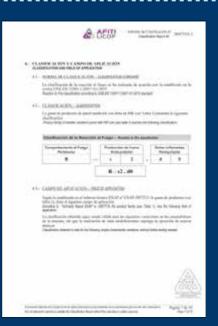


RACCORDO COPERTURA "DECK", PARETE

TABELLA COLORI

RAPPORTI DI CLASSIFICAZIONE



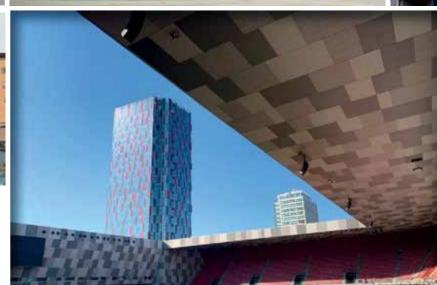


Tight toron	62	CICOF	Checiliative Report

Agent			
Song Street, 5 draft action 5 Taxon of Toxonto, 5 20th, repolation by	OTHER DESIGNATION OF THE PERSON OF THE PERSO	ter Lite Aus	
Condition of expenses			
A francisco en El ricondo	Assessed.		
Toronin .			- Statement or
(Nempty (ii)			1000
Chicago Springs (Sec Springs (Sec			- Same
Change been the			al state of
Therest Sendante (b.			
That briggings			- Name
2 Market temperature For Total control to storage as	court of A arts		Prince
4. Chamer strips	CONTRACTOR AND	acutives.	
** Dassboots	The second second		and demand
-03 CHO C 540	- 01 30M	of Street, Str	(Come 712 of the 0
44 - DAMESTON			
ineditionalism back	Constitution (conjugate and conjugate and co	All most in class	No among to to
The Residen	na Casalization		1129 tot /



REALIZZAZION



REALIZZAZIONI

I dati di calcolo, i valori tabellari, le distinte dei materiali, gli elaborati grafici, come ogni altro documento fornito da ELCOM SYSTEM Spa, dovranno essere considerati come semplici elementi di orientamento e non comportano alcuna responsabilità da parte della Venditrice, rimanendo, per definizione e normativa, la progettazione, la direzione dei lavori e il collaudo di esclusiva pertinenza, responsabilità e cura dell'acquirente. ELCOM SYSTEM Spa si riserva il diritto di apportare alla propria produzione le modifiche o i miglioramenti tecnici ritenuti necessari.

